首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
森林转型是指森林覆盖率由净减少到净增加的过程。中国森林早在20世纪80年代就进入了转型期,然而,中国热带地区的总森林覆盖率虽呈增长趋势,但依旧存在着天然林大量被毁的现象。鉴于天然林对森林生态系统功能的重要作用,本研究通过加入森林类型分类的内容,以西双版纳为例探讨其森林转型的真实特征。结果表明:森林转型理论单纯以“总森林”覆盖率为研究对象,忽视了其他森林类型的动态变化,甚至掩盖了“天然林”的真实动态变化。西双版纳的森林转型主要是人工种植林的扩张所致,只是树木数量统计上的转型。事实上,自1988年以来,西双版纳的天然林一直在锐减。所以建议未来关于森林转型的研究应将“森林”区分成不同的森林类型加以研究。  相似文献   

2.
云南西双版纳地区森林转型特征(英文)   总被引:1,自引:0,他引:1  
森林转型是指森林覆盖率由净减少到净增加的过程。中国森林早在20世纪80年代就进入了转型期,然而,中国热带地区的总森林覆盖率虽呈增长趋势,但依旧存在着天然林大量被毁的现象。鉴于天然林对森林生态系统功能的重要作用,本研究通过加入森林类型分类的内容,以西双版纳为例探讨其森林转型的真实特征。结果表明:森林转型理论单纯以"总森林"覆盖率为研究对象,忽视了其他森林类型的动态变化,甚至掩盖了"天然林"的真实动态变化。西双版纳的森林转型主要是人工种植林的扩张所致,只是树木数量统计上的转型。事实上,自1988年以来,西双版纳的天然林一直在锐减。所以建议未来关于森林转型的研究应将"森林"区分成不同的森林类型加以研究。  相似文献   

3.
杨建波  马友鑫  白杨  曹慧 《广西植物》2019,39(9):1243-1251
为了评估云南省西双版纳森林植被乔木多样性的时间变化,该研究通过样方调查收集了该地区4种主要森林植被(热带雨林、热带季节性湿润林、热带山地常绿阔叶林和暖热性针叶林)乔木多样性数据,结合遥感影像提取了该地区4种森林植被在1992年、2000年、2009年和2016年4个时期的分布,用Simpson、Shannon-Wiener和Scaling物种多样性指数对比4种森林植被乔木均匀度差异,并利用Scaling生态多样性指数和灰色关联评价模型,评估该地区在4个时期的森林乔木多样性的时间变化。结果表明:(1)森林面积比例变化有先减少后增加的趋势,表现为由1992年的65.5%减少至2000年的53.42%,减少到2009年的52.49%,再增至2016年的54.73%,但热带雨林呈现持续减少的趋势。(2) 4种森林植被对乔木多样性的贡献有明显差异,均匀度排序是热带雨林>热带山地(低山)常绿阔叶林>暖热性针叶林>热带季节性湿润林,丰富度排序是热带雨林>热带山地(低山)常绿阔叶林>热带季节性湿润林>暖热性针叶林,对乔木多样性贡献的排序是热带雨林>热带山地(低山)常绿阔叶林>热带季节性湿润林>暖热性针叶林。(3)热带雨林和热带季节性湿润林乔木多样性呈现持续减少趋势,4个时期西双版纳森林植被乔木多样性排序为1992年>2009年> 2016年> 2000年。以上结果表明经济活动是影响西双版纳生物多样性的重要原因,保护热带雨林对维持该地区生物多样性具有重要意义。  相似文献   

4.
西双版纳石灰岩山森林植被   总被引:12,自引:1,他引:12  
王洪  朱华  李保贵   《广西植物》1997,17(2):101-117
石灰岩山森林是组成西双版纳地区植被的主要类型之一,由于石灰岩山的特殊生境,绝大部分石灰岩山森林与非石灰岩山森林有着显著的区别。本文通过样方调查,将本区现存的石灰岩山原生植被分为3个主要的植被类型:即热带季节性雨林,热带季节性湿润林和热带山地矮树林。石灰岩山的季节性雨林是热带雨林的一个类型,仅分布于潮湿的沟谷和阴坡,森林高达30m以上,乔木层具有3层结构。根据生境和乔木层落叶树种的多寡,可将其分为湿性季节性雨林和干性季节性雨林2种类型。湿性季节性雨林以番龙眼为标志,落叶树在乔木种类和重要值上均低于10%。干性季节性雨林以毛麻楝,轮叶戟为标志,落叶树在种类和重要值上均占10%~30%。本文认为,本区石灰岩山的季节性雨林在性质上与非石灰岩季节性雨林相同,尽管二者在群落的区系组成上有所差异。热带季节性湿润林主要分布于山坡中部,森林高度通常为20~25m,乔木层具有2层结构。根据落叶树种的多寡可将其分为热带季节性常绿湿润林和热带季节性半常绿湿润林等2个类型。季节性常绿湿润林高约20m,森林常绿或有少量落叶树种,以多脉桂花,易武栎及尖叶闭花木为标志和优势。季节性半常绿湿润林高20~25m,落叶树在乔木种类上占30%~6?  相似文献   

5.
西双版纳热带森林地区不同生境陆生软体动物多样性研究   总被引:15,自引:0,他引:15  
本文对西双版纳热带森林地区不同生境陆生软件动物的物种多样性进行了研究,在9个生境中进行了定量调查和采集,共获得15000号标本,经鉴定,得44种和亚种,隶于3目15科36属,多样性分析结果表明,9种生境的物种子丰富度指数dMA的取值范围在0.240~4.634之间,多样性指数H的范围是0.100~1.043均匀度JSW为0.305~0.887。根据不同生境物种的相似性系数C进行系统聚类,9个生境在  相似文献   

6.
选取西双版纳地区橡胶树适宜和次适宜种植区6个年龄段(5、9、14、19、23、26年生)的橡胶林,对其生长参数进行了实测,利用生物量回归方程得到了橡胶林的生物量和固碳量,并探讨了橡胶林的固碳潜力。结果表明:西双版纳适宜种植区橡胶林地上净初级生产力(ANPP)在19年生时达到最大,为(16.22±3.47)t.hm-2.a-1;次适宜种植区橡胶林ANPP在23年生时达到最大,为(8.65±3.46)t.hm-2.a-1。适宜和次适宜种植区橡胶林地上总生物量(WA)最大值分别为205.82和139.76t.hm-2。对应的生物量内禀增长率分别为21%和14%。适宜和次适宜种植区橡胶林碳储量最大值分别达123.49和83.86tC.hm-2,均明显低于西双版纳热带季节雨林生态系统的总固碳量(311.41±66.46)tC.hm-2,适宜种植区橡胶林固碳量略高于世界热带森林的平均水平(121tC.hm-2)。截至2008年,西双版纳橡胶林总固碳量约为16.54×106tC。  相似文献   

7.
西双版纳森林植被研究   总被引:1,自引:0,他引:1       下载免费PDF全文
西双版纳是世界生物学多样性保护的关键和热点地区,倍受国际学术界的关注。笔者依据30多年来对西双版纳植被的调查,结合植物群落生态学与植物区系地理学研究,并参考世界类似热带植被的研究成果,对西双版纳植被的分类、物种组成、群落生态表现和植物区系特征等作了系统探讨,还进一步分析比较了其与世界类似热带森林植被的关系。结果显示,西双版纳的森林植被共包括32个较为典型的群系,且分属于7个主要的植被型,即热带雨林、热带季节性湿润林、热带季雨林、热带山地(低山)常绿阔叶林、热带棕榈林、暖热性针叶林和竹林。本文对西双版纳植被进行的全面记录和系统归纳,可为科学研究、生物多样性保护和自然保护区的管理提供参考。  相似文献   

8.
西双版纳热带森林鸟类群落结构   总被引:9,自引:0,他引:9  
王直军 《动物学研究》1991,12(2):169-174
本文通过鸟类群落结构变化、鸟类摄食生态及其与环境关系的研究,认识西双版纳热带森林变迁的进程。结果表明:西双版纳地区由于森林破坏和滥捕乱猎严重,大型鸟类种和数量明显下降,啄木鸟科鸟类减少,森林砍伐造成一些蛀干害虫增生,自然平衡失调。目前,该区未出现明显的食叶害虫危害森林成灾情况,这与小型食虫鸟类受人为猎杀影响较小,仍能发挥其生态功能有关。  相似文献   

9.
西双版纳石灰岩森林的植物区系地理研究   总被引:13,自引:7,他引:13  
朱华  王洪  李保贵  许再富   《广西植物》1996,16(4):317-330
西双版纳石灰岩森林植物区系经调查有维管束植物153科,640属,1394种及变种,其中,种子植物占129科558属1269种及变种。种子植物的分布区类型组成是热带和主产热带的科占总科数的71.3%;热带分布属占总属数的90.1%;热带分布种超过总种数的90%。热带分布属中又以热带亚洲分布属最多,占总数的35.3%;热带分布种中则以热带亚洲分布及其变型的种类占总种数的64.5%为特点。这表明该石灰岩森林植物区系是热带性质的植物区系,属于热带亚洲区系的一部分。由于特殊的地理位置,西双版纳地区是许多典型热带植物的分布北界,同时又是几种地理成分的交汇地带,这又使该石灰岩区系带有明显热带边缘性质和多种地理成分交汇的特点。  相似文献   

10.
西双版纳主干公路沿线森林景观格局动态   总被引:4,自引:1,他引:3  
根据西双版纳地区1976、1988和2003年3期Landsat MSS/TM/ETM影像的解译结果,借助于地理信息系统技术,运用景观生态学的基本理论分析了该区主干公路沿线的森林景观格局动态。主要结果为:3个时期,与整个西双版纳州相比,公路沿线10km范围内的人工林景观百分比更大,增长更快,天然林景观则表现出相反的特征和趋势;且距公路越近,天然林的景观百分比越小,人工林的景观百分比越大,表现出明显的公路效应。公路沿线景观格局朝着多样化、均匀化、破碎化的方向发展。样区内的质心偏移分析表明,1976年至2003年,橡胶林、热带季节雨林、灌木林、山地雨林和非林地景观的分布都在向远离公路的方向偏移。  相似文献   

11.
Challenges to estimating carbon emissions from tropical deforestation   总被引:2,自引:0,他引:2  
An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on 'committed flux' calculations, as used by a few studies, are not comparable with the 'annual balance' calculation method used by other studies.  相似文献   

12.
Extreme climatic events and land‐use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year?1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land‐use change for 2008, can be negated or reversed during drought years [NBP = ?0.06 (?0.31 to +0.01) Pg C year?1]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land‐use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency.  相似文献   

13.
14.
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan‐tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr?1 in the 1990s and 7.6 million ha yr?1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr?1 (range: 646–1238) and 880 MtC yr?1 (range: 602–1237) respectively, with humid regions contributing two‐thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr?1 (range: 61–168) and 97 MtC yr?1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.  相似文献   

15.
Emissions of carbon from forestry and land-use change in tropical Asia   总被引:11,自引:0,他引:11  
The net emissions of carbon from forestry and changes in land use in south and southeast Asia were calculated here with a book-keeping model that used rates of land-use change and associated per hectare changes in vegetation and soil to calculate changes in the amount of carbon held in terrestrial ecosystems and wood products. The total release of carbon to the atmosphere over the period 1850–1995 was 43.5 PgC. The clearing of forests for permanent croplands released 33.5 PgC, about 75% of the total. The reduction of biomass in the remaining forests, as a result of shifting cultivation, logging, fuelwood extraction, and associated regrowth, was responsible for a net loss of 11.5 PgC, and the establishment of plantations withdrew from the atmosphere 1.5 PgC, most of it since 1980. Based on comparisons with other estimates, the uncertainty of this long-term flux is estimated to be within ±30%. Reducing this uncertainty will be difficult because of the difficulty of documenting the biomass of forests in existence >40 years ago. For the 15-y period 1981–1995, annual emissions averaged 1.07 PgC y–1, about 50% higher than reported for the 1980s in an earlier study. The uncertainty of recent emissions is probably within ± 50% but could be reduced significantly with systematic use of satellite data on changes in forest area. In tropical Asia, the emissions of carbon from land-use change in the 1980s accounted for approximately 75% of the region’s total carbon emissions. Since 1990 rates of deforestation and their associated emissions have declined, while emissions of carbon from combustion of fossil fuels have increased. The net effect has been a reduction in emissions of CO2 from this region since 1990.  相似文献   

16.
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long‐term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.  相似文献   

17.
Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.  相似文献   

18.
The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajós and Caxiuanã), all major sites of the Large‐Scale Biosphere–Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1±1.4 Mg C ha−1 yr−1 (Manaus), 14.4±1.3 Mg C ha−1 yr−1 (Tapajós) and 10.0±1.2 Mg C ha−1 yr−1 (Caxiuanã). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajós has significantly more plant‐available phosphorus and calcium. Autotrophic respiration at all three sites (14.9–21.4 Mg C ha yr−1) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon‐use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34±0.10) and Caxiuanã (0.32±0.07), but may be higher at Tapajós (0.49±0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests.  相似文献   

19.
Evaluating the annual sources and sinks of carbon from land-use changehelps constrain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses of land-use change in China and tropical Asia. The original forest areas are estimated to have covered 546×106 ha in tropical Asia and 425×106 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forest cover (29% of the initial forest area). Tropical Asia is estimated to have lost 26%of its initial forest cover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions reflect the different histories over the last 150 years, with China's emissions peaking in the late 1950s (at 0.2-0.5 Pg C@a-1) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C@a-1). Despite the fact that most deforestation has been for new agricultural land, the majority of the lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands. Unlike croplands, the origins of these other lands are poorly documented, and thus add considerable uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of carbon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

20.
The carbon balance of tropical, temperate and boreal forests   总被引:28,自引:0,他引:28  
Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity. The carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle. In this paper, we discuss the climatic influences on the carbon dynamics of boreal, temperate and tropical forests by presenting a new synthesis of micrometeorological, ecophysiological and forestry data, concentrating on three case-study sites. Historical changes in the carbon balance of each biome are also reviewed, and the evidence for a carbon sink in each forest biome and its likely behaviour under future global change are discussed. We conclude that there have been significant advances in determining the carbon balance of forests, but there are still critical uncertainties remaining, particularly in the behaviour of soil carbon stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号