首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of beta-endorphin-immunoreactivity (beta E-IR) from rat pituitary anterior lobe (AL) quarters, neurointermediate lobes (NILs), and hypothalamic fragments was investigated in vitro. The beta-adrenoceptor agonist isoproterenol (ISO) and the hypothalamic neurohormone corticotropin-releasing factor (CRF) concentration-dependently stimulated the release of beta E-IR from superfused AL quarters and NILs, but not from incubated hypothalamic fragments. Dopamine (DA) inhibited the release of beta E-IR from NILs and hypothalamic tissue in a concentration-dependent manner, whereas it did not affect the release from AL quarters. Arginine8-vasopressin (AVP) stimulated the release of beta E-IR from AL quarters and hypothalamic fragments, but did not affect the release from NILs. The data indicate that the release of beta E-IR from cells in the pituitary lobes and in the hypothalamus is differentially regulated, but that common principles are involved. In particular, the results provide first direct evidence for an action of vasopressin as a stimulator of the release of POMC-derived peptides in the hypothalamus.  相似文献   

2.
It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic–pituitary–adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 min after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3 × 2.5 mg/kg/day on day 1; 3 × 20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 h after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal.  相似文献   

3.
It has been reported that cells of the immune system produce and release considerable amounts of pro-opiomelanocortin (POMC) -derived peptides in response to coculture with a variety of stimulatory agents. The present study investigated whether extracts of human peripheral blood mononuclear cells (PBMC) contain immunoreactivity for beta-endorphin (beta E) and related peptides. Using four endorphin RIA systems with different specificities, extracts of freshly isolated PBMC and PBMC cultured in the presence or absence of mitogens or of corticotropin releasing factor (CRF) and vasopressin (VP), were analyzed. With a radioimmunoassay (RIA) system directed to the midportion of beta E, immunoreactivity (MP beta E-IR) was readily detectable, although the concentration was extremely low (ca. 200 pg/10(7) cells). beta E immunoreactivity (beta E-IR) and alpha-endorphin immunoreactivity (alpha E-IR), as determined in C-terminally directed RIA systems, were present in even lower concentrations. gamma-Endorphin immunoreactivity (gamma E-IR) was hardly detectable. Of subsets enriched in T-cells, B-cells or monocytes, the highest concentration of MP beta E-IR was detected in extracts of monocytes. Coculture of PBMC with the mitogen Concanavalin A (Con A) or Phytohaemagglutinin (PHA) increased the amount of MP beta E-IR in extracts of the cells. No increase in alpha E-IR, however, was detected, whereas beta E-IR was only increased in extracts of cells cultured in the presence of Con A. No increase, in any of the immunoreactivities, was observed in extracts of PBMC cultured with bacterial lipopolysaccharide (LPS) or with the combination of CRF and VP, both stimuli that have been reported to induce POMC peptides in cultured PBMC. The present data show that human PBMC contain endorphin-like immunoreactivity, but in very small amounts. The extremely low concentrations and the ineffectiveness of LPS and the combination of CRF and VP to increase the endorphin-like immunoreactivity raise questions about the reported capacity of PBMC to synthesize POMC-derived peptides.  相似文献   

4.
Rats with increased alcohol motivation have been found to have a rise in enkephalin levels in limbic cortex and a decrease in met-enkephalin levels in the brain basal ganglia. Reduction of met-enkephalin to leu-enkephalin ratio in basal ganglia, limbic cortex and hypothalamus may serve as an index of increased inclination to ethanol in these animals. Alcohol dependence is characterized by reduced cAMP content in the majority of brain structures studied, sharply decreased met-enkephalin levels in limbic cortex and hypothalamus, and diminished cAMP and cGMP content in hypothalamus. In the third stage of experimental alcoholism the partial normalization of met-enkephalin and cAMP levels is observed in brain structures, with cGMP content increased in hypothalamus and considerably reduced in basal ganglia.  相似文献   

5.
C C Chao  W E Trout  P V Malven 《Peptides》1987,8(2):367-369
Anterior lobe (AL) tissue of the ovine pituitary gland contained a form of immunoreactive dynorphin-A (ir-DYN-A) larger than that found in pituitary neurointermediate lobe. Administration of estradiol-17 beta or estradiol-17 beta plus progesterone to ovariectomized sheep decreased AL tissue concentrations of ir-DYN-A but did not affect any LH parameter. Enzymatically dispersed AL cells also contained ir-DYN-A, but specific release during in vitro incubation was too low to be detected even when cells were exposed to gonadotropin-releasing hormone.  相似文献   

6.
Specific receptors for corticotropin releasing factor (CRF) were identified in two functionally distinct systems within the brain, the cortex and the limbic system. Autoradiographic mapping of the CRF receptors in the brain revealed high binding density throughout the neocortex and cerebellar cortex, subiculum, lateral septum, olfactory tract, bed nucleus of the stria terminalis, interpeduncular nucleus and superior colliculus. Moderate to low binding was found in the hippocampus, nucleus accumbens, claustrum, nucleus periventricularis thalamus, mammillary bodies, subthalamic nucleus, periaqueductal grey, locus coeruleus and nucleus of the spinal trigeminal tract. As in the anterior pituitary gland, CRF receptors in the brain were shown to be coupled to adenylate cyclase. However, in contrast to the marked decrease in CRF receptors observed after adrenalectomy in the anterior pituitary gland, CRF receptor concentration in the brain and pars intermedia of the pituitary was unchanged. The presence of CRF receptors in areas involved in the control of hypothalamic and autonomic nervous system functions is consistent with the major role of CRF in the integrated response to stress.  相似文献   

7.
Cocaine and alcohol are frequently used simultaneously and this combination is associated with enhanced toxicity. We recently showed that active cocaine abusers have a markedly enhanced sensitivity to benzodiazepines. Because both benzodiazepines and alcohol facilitate GABAergic neurotransmission we questioned whether cocaine abusers would also have an enhanced sensitivity to alcohol that could contribute to the toxicity. In this study we compared the effects of alcohol (0.75 g/kg) on regional brain glucose metabolism between cocaine abusers (n = 9) and controls (n = 10) using PET and FDG. Alcohol significantly decreased whole brain metabolism and this effect was greater in controls (26+/-6%) than in abusers (17+/-10%) even though they had equivalent levels of alcohol in plasma. Analysis of the regional measures showed that cocaine abusers had a blunted response to alcohol in limbic regions, cingulate gyrus, medial frontal and orbitofrontal cortices. CONCLUSIONS: The blunted response to alcohol in cocaine abusers contrasts with their enhanced sensitivity to benzodiazepines suggesting that targets other than GABA-benzodiazepine receptors are involved in the blunted sensitivity to alcohol and that the toxicity from combined cocaine-alcohol use is not due to an enhanced sensitivity to alcohol in cocaine abusers. The blunted response to alcohol in limbic regions and in cortical regions connected to limbic areas could result from a decreased sensitivity of reward circuits in cocaine abusers.  相似文献   

8.
New perspectives on cocaine addiction: recent findings from animal research   总被引:1,自引:0,他引:1  
Research with laboratory animals has provided several insights into the nature of cocaine abuse and addiction. First, the nature of drug addiction has been reevaluated and the emphasis has shifted from physical dependence to compulsive drug-taking behavior. Second, animal studies suggest that cocaine is at least as addictive as heroin and possibly even more addictive. Third, cocaine is potentially more dangerous than heroin as evidenced by the higher fatality rate seen in laboratory animals given unlimited access to these drugs. Fourth, the neural basis of cocaine reinforcement has been identified and involves an enhancement of dopaminergic neurotransmission in the ventral tegmental dopamine system. Other addictive drugs (e.g., opiates) may also derive at least part of their reinforcing impact by pharmacologically activating this reward system. Fifth, although the biological consequences of repeated cocaine self-administration on central nervous system functioning are poorly understood, preliminary findings suggest that intravenous cocaine self-administration may decrease neural functioning in this brain reward system. This has important clinical implications because diminished functioning of an important brain reward system may significantly contribute to relapse into cocaine addiction. These and other findings from experimentation with laboratory animals suggest new considerations for the etiology and treatment of drug addiction.  相似文献   

9.
Effects of sub-acute cocaine treatment on 3H-naloxone binding to 6 brain regions were examined in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Cocaine hydrochloride (3 mg/kg, i.v.) was given by bolus injection daily for five days. Rats were decapitated 24 hr following the final injection and crude membrane fractions prepared from the cortex (CT), hippocampus (HI), striatum (ST), hypothalamus (HY), midbrain (MB) and medulla/pons (MD). Binding of 3H-naloxone was consistent with a single site model in CT, HI, HY, MB and MD from vehicle-treated SHR and WKY. Cocaine treatment of SHR significantly decreased the maximal binding capacity (Bmax) of 3H-naloxone in the HI, ST and HY and the binding affinity was increased in HI. In contrast, a significant increase in Bmax was noted in CT and HI membranes isolated from cocaine-treated WKY. The binding affinity of 3H-naloxone to MB membranes of WKY was significantly decreased by cocaine treatment. The binding characteristics of 3H-naloxone in MD membranes were not different following cocaine treatment or between strains. Scatchard analysis indicated biphasic binding of 3H-naloxone binding to ST membranes from both SHR and WKY. Our results indicate that cocaine produces complex and differential changes in opiate receptors and, presumably, opioid peptide neuronal function in SHR and WKY.  相似文献   

10.
Receptors for thyrotropin-releasing hormone (TRH) in the rat brain and the pituitary are heterogenous. The receptors were classified into four types according to the dissociation constant (KD). High-affinity receptors (KD less than 3 nM) are present in the pituitary, hypothalamus, amygdala, and limbic forebrain which contains the nucleus accumbens and the septum. Intermediate-affinity receptors (KD, 5-16 nM) are evidently present in the frontal cortex, hippocampus, striatum, thalamus, and the brainstem, but may also be present in other regions. Low-affinity TRH receptors (KD, 50-80 nM) are seen in the limbic forebrain, amygdala, and the hypothalamus. Very-low-affinity receptors (KD, 215 nM) exist in the pituitary. Experiments using DN-1417 (gamma-butyrolactone-gamma-carbonyl-histidyl-prolinamide citrate), a synthetic TRH analogue with a more potent central activity, indicated the presence of TRH receptors having a high affinity to DN-1417 at least in the limbic forebrain but not in the pituitary. This type of receptor is not labeled by [3H](3-methyl-histidine2)-TRH. Density of the TRH receptor is the highest in the pituitary and next highest in the amygdala.  相似文献   

11.
天然奖赏与药物奖赏   总被引:2,自引:0,他引:2  
Cui CL  Han JS 《生理科学进展》2005,36(2):103-108
动物和人的中枢神经系统具有奖赏机制来加强和激励对机体有益的行为,以利个体生存和种族繁衍。但这一系统一旦被某些外源性物质反复地异常激活(如药物滥用),则引起神经系统的慢性适应性改变,将对机体造成严重损害。实现奖赏效应的神经结构主要位于中脑边缘系统,中脑腹侧被盖区(VTA)至伏核(NAc)的多巴胺通路是食物和性活动等天然奖赏和成瘾性药物引起奖赏效应的共同通路。本文概述天然奖赏和成瘾性药物奖赏的异同,旨在探讨阻断后者而不损及前者的途径。  相似文献   

12.
Heroin affects purine nucleotides catabolism in rats in vivo   总被引:7,自引:0,他引:7  
Yang YD  Zhang JZ  Sun C  Yu HM  Li Q  Hong M 《Life sciences》2006,78(13):1413-1418
To investigate the effect of heroin on purine nucleotides catabolism, a rat model of heroin administration and withdrawal was established. Concentrations of uric acid, creatinine, and urea nitrogen in plasma and ADA in plasma, brain, liver, and small intestine were tested. When two heroin administration groups were compared with the control group, the concentrations of plasma uric acid and ADA in plasma, brain, liver, and small intestine increased, whereas the plasma urea nitrogen concentrations in two heroin administration groups and the plasma creatinine concentration in the 3-day heroin administration group did not increase. It seemed that heroin exposure for a short time did not affect renal clearance rate notably. When two withdrawal groups were compared with two heroin administration groups, the concentrations of plasma uric acid and ADA in liver and small intestine decreased, but there was no significant reduction in ADA concentrations of the brain, while the plasma ADA concentrations in the two withdrawal groups were significantly higher than those of two heroin administration groups. When the two withdrawal groups were compared with the control group, there was no significant difference in the concentrations of plasma uric acid and ADA in liver and small intestine, while the concentrations of ADA in plasma and brain were still higher than those of the control group. The results imply that heroin administration may enhance the catabolism of purine nucleotides in the brain and other tissues by increased concentration of ADA and the effect may last for a long time in the brain.  相似文献   

13.
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate''s attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate''s blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction.  相似文献   

14.
Maher CE  Martin TJ  Childers SR 《Life sciences》2005,77(10):1140-1154
Previous studies have shown that chronic opiate treatment decreases mu opioid-stimulated [35S]GTPgammaS binding in specific brain regions. To extend these findings, the present study investigated DAMGO-stimulated [35S]GTPgammaS binding in membrane homogenates and coronal sections from rats non-contingently administered heroin. Rats were administered saline or increasing doses of heroin i.v. hourly up to 288 mg/kg/day over 40 days. In brain sections, chronic heroin administration decreased DAMGO-stimulated [35S]GTPgammaS binding in medial thalamus and amygdala, with no effect in cingulate cortex or nucleus accumbens. Chronic heroin administration also reduced [35S]GTPgammaS binding stimulated by the principal metabolite of heroin, 6-monoacetylmorphine. In contrast, no significant changes in mu opioid receptor binding were observed in amygdala or thalamus using [3H]DAMGO autoradiography. In membranes from amygdala and thalamus, chronic heroin treatment decreased the maximal effect of DAMGO in stimulating [35S]GTPgammaS binding, with no effect on DAMGO potency. GTPgammaS saturation analysis showed that chronic heroin treatment decreased the Bmax, and increased the K(D), of DAMGO-stimulated [35S]GTPgammaS binding. These data suggest potential mechanisms by which chronic agonist treatment produces opioid receptor/G-protein desensitization in brain.  相似文献   

15.
J M van Ree 《Life sciences》1983,33(23):2283-2289
The influence of different neuropeptides related to pro-opiomelanocortin were tested on acquisition of heroin self-administration in rats. The animals were allowed to self-administer heroin intravenously on a continuous reinforcement schedule during 6 h daily sessions on 5 consecutive days. Treatment was performed subcutaneously 1 h before each daily session. It was found that the opioid peptides alpha-, gamma- and beta-endorphin hardly influenced acquisition of heroin self-administration, while the non-opioid fragments of alpha- and gamma- endorphin modulated this behavioral response. In fact, beta-endorphin (beta E) 2-9 tended to facilitate the rate of acquisition, while the gamma-type endorphins, des-Tyr1-gamma-endorphin (beta E 2-17) and des-enkephalin-gamma-endorphin (beta E 6-17), decreased heroin intake. Concerning the ACTH/MSH related peptides, a decreasing effect of heroin intake was found following treatment with (D-Phe7)-ACTH 4-10, with a high dose of the ACTH 4-9 analog Org 2766 and with gamma 2-MSH, while ACTH 1-24, ACTH 4-10 and a low dose of Org 2766 did not significantly influence self-injecting behavior. It is concluded that pro-opiomelanocortin serves as a precursor molecule for peptide fragments, which modulate the acquisition of heroin self-administration in rats.  相似文献   

16.
M Ferrini  A F De Nicola 《Life sciences》1991,48(26):2593-2601
The effects of 1-4 days of estradiol (E2) treatment on type I and type II glucocorticoid receptors (GCR) were determined in cytosolic fractions from brain regions of ovariectomized rats. Four days after E2 administration, type I GCR increased in septum, amygdala, hypothalamus and hippocampus, but decreased in the anterior pituitary. Type II GCR increased in septum and hypothalamus only. For both receptor types, changes occurred earlier in septum (1 day) than in the other regions. The E2 increment was due to an increase in Bmax, without changes in Kd. The up-regulation of type II GCR by E2 was also confirmed immunocytochemically in four nuclei of the septal area. In a parallel study, E2 receptors were determined in nuclear and cytosol fractions from the same regions analyzed for GCR. In rats receiving E2, estrogen receptors decreased in cytosol and increased in nuclei from septum, amygdala, hypothalamus and anterior pituitary, but did not change in hippocampus. The results suggest that GCR in certain neuroendocrine regions are regulated by E2, without taking into account whether the areas involved contain high (anterior pituitary), moderate (septum, hypothalamus, amygdala) or low (hippocampus) levels of E2 receptors. Our model may shed light on sex differences in GCR and on E2 regulation of glucocorticoid action in brain and the pituitary.  相似文献   

17.
This work evaluated in a population of heroin and heroin plus cocaine human addicts:
  1. Norepinephrine (NE), epinephrine (Epi), and 3-methoxy-4-hydroxyphenylglycol (MHPG) (the principal metabolite of brain NE) plasma levels;
  2. Monoamine oxidase (MAO) activity; and
  3. 3H-imipramine specific binding to the amine carrier in platelets.
NE plasma levels were significantly lower in the short-term heroin user groups (1–3 and 4–6 yr), a finding not observed in both the long-term heroin user (>6 yr) and heroin plus cocaine user (>6 yr) groups. Epi levels changed in a similar manner, except that a significant increase was noted in heroin plus cocaine abusers. Conversely, dopamine and MHPG plasma levels increased with the duration of heroin use, and even more with cocaine abuse. Platelet MAO activity increased in all groups. Specific3H-imipramine binding sites showed an increase after 3 yr of heroin abuse and in all heroin plus cocaine addicts. In conclusion, short-term use of heroin decreases NE or Epi release, but with prolonged use, a slow adpatation occurs. In contrast, cocaine inhibits the neuronal Epi uptake, even in a situation of long duration of abuse. Probably the amine levels additionally regulate the amine carrier, resulting in changes that show a different pattern from major depression. These drugs of abuse may also influence directly or indirectly related enzymatic systems.  相似文献   

18.
The effect of the vasopressin neuropeptide des-glycinamide (Arg8)-vasopressin (DGAVP) on reducing the acquisition of intravenous heroin self-administration in rats was analyzed. When rats reduced in body weight were allowed to self-administer heroin for 1 h per day in the presence of a fixed time, non contingent food delivery schedule, it appeared that heroin intake was related in an orderly way to the unit dose of heroin delivered. DGAVP decreased heroin intake during days 4 and 5 of acquisition, especially when a high dose of heroin was delivered. DGAVP decreased heroin intake more effectively when rats were tested without the food delivery schedule and for 6 h instead of 1 h sessions per day. Structure activity relationship studies revealed that the peptide (pGlu4, Cyt6)AVP-(4-8) was the shortest active sequence mimicking the effect of DGAVP and that this peptide was somewhat more potent than DGAVP in this respect. The peptide (pGlu4,Cyt6)AVP-(4-9) increased the heroin intake of the rats. DGAVP and (pGlu4,Cyt6)-AVP-(4-8) also decreased cocaine intake of body weight reduced rats given the opportunity to self-administer cocaine intravenously in daily 6 h sessions. It is concluded that vasopressin neuropeptides may decrease the reinforcing efficacy of heroin and cocaine during acquisition of drug self-administration rather than interact with nutritional and environmental factors influencing drug taking behavior.  相似文献   

19.
The changes in blood flow through selected brain structures and the changes in the total RNA content of cells of these structures were examined after a single administration of yeast RNA to 6-month-old male rats. The total content of ribosomal RNA in cells of the limbic system (septum, hippocampus, hypothalamus) increased 48 hrs after the administration of 100 mg i.p. yeast RNA , dropped after 7 days (in hypothalamus), 21 and 30 days (in hippocampus), 30 days (in septum). In cells of the limbic system as a whole there is a higher total RNA content in experimental rats. No changes were observed in the cells of parietal brain cortex. Blood flow increased in limbic structures 21 and 30 days after RNA administration and in septum and in hippocampus also 90 days after application. No changes were observed in parietal brain cortex, bulbi olfactorii, cerebellum and brain stem. Histochemical changes correlated positively with blood flow changes in the limbic system 14, 21, 30 and 90 days after RNA application. The body weight of experimental rats did not differ from that of control animals. The changes in haemodynamic parameters were transient and were demonstrated as fluctuations in heart rate, cardiac output, and peripheral resistance. Blood pressure experienced no changes.  相似文献   

20.
Nicotine is a psychoactive ingredient in tobacco that significantly contributes to the harmful tobacco smoking habit. Nicotine dependence is more prevalent than dependence on any other substance. Preclinical research in animal models of the various aspects of nicotine dependence suggests a critical role of glutamate, gamma-aminobutyric acid (GABA), cholinergic and dopamine neurotransmitter interactions in the ventral tegmental area and possibly other brain sites, such as the central nucleus of the amygdala and the prefrontal cortex, in the effects of nicotine. Specifically, decreasing glutamate transmission or increasing GABA transmission with pharmacological manipulations decreased the rewarding effects of nicotine and cue-induced reinstatement of nicotine seeking. Furthermore, early nicotine withdrawal is characterized by decreased function of presynaptic inhibitory metabotropic glutamate 2/3 receptors and increased expression of postsynaptic glutamate receptor subunits in limbic and frontal brain sites, while protracted abstinence may be associated with increased glutamate response to stimuli associated with nicotine administration. Finally, adaptations in nicotinic acetylcholine receptor function are also involved in nicotine dependence. These neuroadaptations probably develop to counteract the decreased glutamate and cholinergic transmission that is hypothesized to characterize early nicotine withdrawal. In conclusion, glutamate, GABA and cholinergic transmission in limbic and frontal brain sites are critically involved in nicotine dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号