首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
2.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

3.
Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, Pnigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of ‘flavonic evolution’ in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies.  相似文献   

4.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

5.
Pinus armandii is suspicious to be responsible for the Pine Nut Syndrome, a long lasting bitter and metallic taste after the consumption of pine nuts. To find chemical characteristic features for the differentiation of P. armandii from other Pinus species, 41 seed samples of the genus Pinus from 22 plant species were investigated regarding the content and the composition of fatty acids, tocopherols, and amino acids. The predominant fatty acids in the seed oils were linoleic acid (35.2 – 58.2 g/100 g), oleic acid (14.6 – 48.5 g/100 g), and pinolenic acid (0.2 – 22.4 g/100 g), while the vitamin‐E‐active compounds were dominated by γ‐tocopherol. The amino acid composition was mainly characterized by arginine and glutamic acid with amounts between 0.9 and 8.9 g/100 g as well as 2.1 g/100 g and 8.3 g/100 mg. On the basis of this investigation, a Principle Component Analysis has been used to identify the most important components for the differentiation of P. armandii from other Pinus species. Using the data for glutamic acid, 20:2Δ5,11, 18:3Δ5,9,12, 18:1Δ9, and oil content, a classification of the 41 samples into four different groups by cluster analysis was possible, but the characteristic features of P. armandii were too close to some other members of the genus Pinus, making a clear differentiation of this species difficult. Nevertheless, the investigation showed the similarities of different members of the genus Pinus with regard to fatty acids, vitamin‐E‐active compounds, and amino acids.  相似文献   

6.
7.
In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine‐dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above‐treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully “leap‐frogging” over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early‐stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition.  相似文献   

8.
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process‐based growth model (cenw ) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid‐range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.  相似文献   

9.
10.
11.
The strong association observed between fire regimes and variation in plant adaptations to fire suggests a rapid response to fire as an agent of selection. It also suggests that fire‐related traits are heritable, a precondition for evolutionary change. One example is serotiny, the accumulation of seeds in unopened fruits or cones until the next fire, an important strategy for plant population persistence in fire‐prone ecosystems. Here, we evaluate the potential of this trait to respond to natural selection in its natural setting. For this, we use a SNP marker approach to estimate genetic variance and heritability of serotiny directly in the field for two Mediterranean pine species. Study populations were large and heterogeneous in climatic conditions and fire regime. We first estimated the realized relatedness among trees from genotypes, and then partitioned the phenotypic variance in serotiny using Bayesian animal models that incorporated environmental predictors. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). An estimate on a subset of stands with more homogeneous environmental conditions was not different from that in the complete set of stands, suggesting that our models correctly captured the environmental variation at the spatial scale of the study. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire‐related trait for evolutionary change in the wild.  相似文献   

12.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

13.
Soil warming opens the nitrogen cycle at the alpine treeline   总被引:1,自引:0,他引:1       下载免费PDF全文
Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N‐poor ecosystems. We investigated N dynamics across the plant–soil continuum during 6 years of experimental soil warming (2007–2012; +4 °C) at a Swiss high‐elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species‐specific but small warming effects, whereas δ15N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ15N values and the transient response in soil inorganic N indicate a persistent increase in plant‐available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes.  相似文献   

14.
15.
16.
17.
Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m?2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine‐scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.  相似文献   

18.
Choosing drought‐tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long‐term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change.  相似文献   

19.
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season‐average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first‐year recruitment in the forest, but had no net effect on fourth‐year recruitment at any site. Watering during the snow‐free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low‐elevation seeds of both species initially recruited more strongly than high‐elevation seeds across the elevation gradient, although the low‐provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High‐ and low‐elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high‐provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.  相似文献   

20.
As a major driving element of the structure and function of arid and semiarid ecosystems, rainfall is the essential factor limiting plant biological processes. To clarify the characteristics of transpiration and responses to summer rainfall, sap flow density (Fd) of Pinus tabulaeformis and Hippophae rhamnoides was monitored using thermal dissipation probes. In addition, midday leaf water potential (ψm) and leaf stomatal conductance (Gs) were also analyzed to determine water use strategies. The results indicated that the diurnal variation in the normalized Fd values exhibited a single‐peak curve for P. tabulaeformis, while H. rhamnoides showed multiple peaks. The normalized Fd for P. tabulaeformis remained relatively stable regardless of rainfall events. However, there was also a significant increase in the normalized Fd for H. rhamnoides in response to rainfall in June and August (< .05), although no significant differences were observed in July. The normalized Fd values for P. tabulaeformis and H. rhamnoides fitted well with the derived variable of transpiration, an integrated index calculated from the vapor pressure deficit and solar radiation (Rs), using an exponential saturation function. The differences in fitting coefficients suggested that H. rhamnoides showed more sensitivity to summer rainfall (< .01) than P. tabulaeformis. Furthermore, during the study period, P. tabulaeformis reduced Gs as soil water decreased, maintaining a relatively constant ψm; while H. rhamnoides allowed large fluctuations in ψm to maintain Gs. Therefore, P. tabulaeformis and H. rhamnoides should be considered isohydric and anisohydric species, respectively. And more consideration should be taken for H. rhamnoides in the afforestation activities and the local plantation management under the context of the frequently seasonal drought in the loess hilly region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号