首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness‐rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the “rarity facets of biodiversity.” This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species'' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.  相似文献   

3.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   

4.

Aim

Rare species typically contribute more to functional diversity than common species. However, humans have altered the occupancy and abundance patterns of many species—the basis upon which we define “rarity.” Here, we use a globally unique dataset from hydrothermal vents—an untouched ecosystem—to test whether rare species over‐contribute to functional diversity.

Location

Juan de Fuca Ridge hydrothermal vent fields, Northeast Pacific Ocean.

Methods

We first conduct a comprehensive review to set up expectations for the relative contributions of rare and common species to functional diversity. We then quantify the rarity and commonness of 37 vent species with relevant trait information to assess the relationship between rarity and functional distinctiveness—a measure of the uniqueness of the traits of a species relative to traits of coexisting species. Next, we randomly assemble communities to test whether rare species over‐contribute to functional diversity in artificial assemblages ranging in species richness. Then, we test whether biotic interactions influence functional diversity contributions by comparing the observed contribution of each species to a null expectation. Finally, we identify traits driving functional distinctiveness using a distance‐based redundancy analysis.

Results

Across functional diversity metrics and species richness levels, we find that both rare and common species can contribute functional uniqueness. Some species always offer unique trait combinations, and these species host bacterial symbionts and provide habitat complexity. Moreover, we find that contributions of species to functional diversity may be influenced by biotic interactions.

Main conclusions

Our findings show that many common species make persistent, unique contributions to functional diversity. Thus, it is key to consider whether the abundance and occupancy of species have been reduced, relative to historical baselines, when interpreting the contributions of rare species to functional diversity. Our work highlights the importance of testing ecological theory in ecosystems unaffected by human activities for the conservation of biodiversity.  相似文献   

5.
植物功能多样性与功能群研究进展   总被引:29,自引:3,他引:29  
孙国钧  张荣  周立 《生态学报》2003,23(7):1430-1435
综述了植物功能多样性与功能群研究的最新进展。介绍了植物功能群的定义及植物功能群的划分方法。在功能多样性与生态系统资源动态关系方面.抽样效应和生态位互补效应用来解释植物多样性在生态系统资源动态中的作用。功能多样性与生态系统的稳定性间的关系可以用生态冗余或生态保险概念来解释,这两个概念是一个问题的两个侧面,是多样性与生态系统功能争论的焦点。  相似文献   

6.
氮(N)沉降对陆地生态系统的结构和功能已产生了重要的影响, N也是中国北方草原植物生长和初级生产力的主要限制性元素。物种多样性和功能多样性是揭示生物多样性对生态系统功能维持机制的关键指标, 然而, 关于长期N添加下草原物种多样性与功能多样性的关系, 及其对初级生产力的影响途径及机制, 尚不十分清楚。为此, 该研究依托在内蒙古典型草原建立的长期N添加实验平台, 实验处理包括1个完全对照(不添加任何肥料)和6个N添加水平(0、1.75、5.25、10.50、17.50和28.00 g·m-2·a-1), 研究了长期N添加对典型草原物种多样性、功能多样性和初级生产力的影响大小及途径。结果表明: 1) N添加显著降低了典型草原的物种丰富度和Shannon-Wiener指数, 但对功能多样性(包括功能性状多样性指数和群落加权性状值)无显著的影响。2)结构方程模型分析表明, 功能多样性主要受物种丰富度的影响, 但是物种多样性减少并没有导致功能多样性降低, 其原因主要是功能群组成发生了改变, 即群落内多年生根茎禾草所占比例显著增加, 以致群落加权性状值变化不大。3) N通过影响物种丰富度和功能群组成, 间接影响群落加权性状值, 进而影响群落净初级生产力。其中, 群落加权性状值是最重要的影响因子, 可解释48%的初级生产力变化, 表明初级生产力主要是由群落内优势物种的生物量及功能性状所决定, 因此该研究的结果很好地支持了质量比假说。  相似文献   

7.
8.
Although it is generally recognized that global biodiversity is declining, few studies have examined long‐term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5‐year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.  相似文献   

9.
山西五鹿山森林群落木本植物功能多样性   总被引:1,自引:9,他引:1  
薛倩妮  闫明  毕润成 《生态学报》2015,35(21):7023-7032
通过选取群落中木本植物种子的扩散方式、传粉方式、植株高度和盖度等13个功能性状,计算出群落的6个功能多样性指数:功能性状距离、功能性状平均距离、功能体积、功能均匀度、功能分散指数和Rao二次熵指数,结合群落物种丰富度指数、Shannon-Wiener指数和物种均匀度指数对山西五鹿山森林群落木本植物功能多样性进行研究。结果表明:(1)功能性状距离、功能性状平均距离、功能体积与物种丰富度、Shannon-Wiener指数显著正相关;功能均匀度与Shannon-Wiener指数、物种均匀度指数显著正相关;功能分散指数、Rao二次熵指数与物种均匀度指数、Shannon-Wiener指数显著正相关;(2)功能多样性的差异很大程度上是由于物种差异所引起的;(3)6个功能多样性指数可分为三类:功能性状距离、功能性状平均距离、功能体积为功能丰富度指数;功能均匀度为功能均匀度指数;功能分散指数和Rao二次熵指数为功能离散度指数。该分类结果符合指数的计算方法和生态学意义,以及相互独立的标准。  相似文献   

10.

Motivation and aim

Mapping the spatial distribution of biodiversity is critical for understanding its fundamental drivers (e.g. speciation, environmental filtering) as well as for conservation assessment. An important dimension of this topic is how the distributions of subsets of species contribute to the overall distribution of biodiversity. Although studies have previously investigated the role of geographically common and rare species in determining these patterns, their respective contributions appear to vary between studies. Knowing which species contribute disproportionately to the spatial distribution of biodiversity enables the identification of key indicator species for biodiversity assessments across large areas and is important for prioritising areas for conservation actions. An extensive review of the literature was carried out to synthesise research on how geographic rarity contributes to spatial patterns of biodiversity. We identify potential explanations for the discrepancies in findings between studies and identify opportunities for further research.

Results

Many studies on the contribution of geographic commonness and rarity to the spatial distribution of biodiversity focus on species richness. A prevalent view is that common (widespread) species contribute disproportionately, although this is not ubiquitous across studies due to factors such as the geographic extent from which relative rarity is quantified. We identify research pathways that will further improve our knowledge of how geographically common and rare species shape the spatial distribution of biodiversity including the impact of spatial scale on species contributions and the incorporation of biodiversity components beyond taxonomic alpha diversity, that is functional and phylogenetic diversity.

Main conclusions

Future research should incorporate multiple biodiversity components and model scale dependency. This will further our knowledge on the underlying processes that shape the spatial variation of biodiversity across the planet and help inform biological surveys and conservation activities.  相似文献   

11.
恢复梯度上华中亚热带森林生物多样性、林分因子及功能特性对生物量、生产力的影响 草地群落上进行的控制实验大都发现生物多样性对生态系统功能有显著促进作用。然而,在天然林中,多样性与林分因子、群落功能特性的相对作用大小仍存在争议。本文在森林恢复梯度上,研究这3类因素对生物量和生产力的相对影响。我们在湖北神农架设置了处于不同恢复阶段的24块(600 m2)亚热 带森林样地,计算了林分生物量和生产力。选择5个关键的植物功能性状,并计算了群落的功能多样性(功能丰富度、功能均匀度和功能离散度)和性状的加权平均值(CWM)。使用一般线性模型(GLMs)、变异分离等方法探究林分因子(密度、林龄、群落最大树高等)、功能特性、物种和功能多样性对生物量和生产力的相对重要性。研究结果表明,随着森林恢复,林分生物量和生产力显著增加,群落物种丰富度显著增加,而功能离散度显著降低。变异分离结果表明,多样性对生物量和生产力的单独效应不显著,但可能通过与林分因子和功能特性的协同效应来影响生物量和生产力。总体而言,我们发现林分因子对亚热带森林生物量和生产力的影响最大,功能特性显著影响生产力,但不影响生物量。这些结果说明,在森林经营中,调整林分结构和群落物种特性是提高森林碳储量和固碳潜力的有效途径。  相似文献   

12.
There is no single diversity index that adequately summarises species diversity, since this is a multidimensional concept and hence should be quantified using a compound statistical measure. Here, we present the DER algorithm, available as an R package on CRAN and as an RWizard application on http://www.ipez.es/RWizard. This algorithm provides tools for differentiating assemblages on the basis of five compounds of diversity: rarity, heterogeneity, evenness, taxonomic/phylogenetic diversity and functional diversity. For all the samples, the algorithm calculates a total of 39 of the indices most often used. All indices of all samples are transformed to a scale range of between 0 and 1, and the algorithm calculates the polar coordinates of all samples with all possible combinations for all five groups of indices. Thus, for each combination, an index of rarity, heterogeneity (species richness is included in this group), evenness, taxonomic/phylogenetic diversity and functional diversity is used for each group to calculate the polar coordinates of all samples. When the polar coordinates of the samples are obtained for each combination, the convex hull and the mean Euclidean distance between samples are calculated. The algorithm selects the combination of indices with the highest value of the mean between convex hull and mean Euclidean distance between samples; priority is therefore given to maximising dispersion between the samples. The polar coordinates of the selected combination are depicted using a diagram from which it is possible to determine the differences in terms of rarity, heterogeneity, evenness, taxonomic/phylogenetic diversity and functional diversity between assemblages.  相似文献   

13.
Veteran hollow oaks (Quercus spp.) are keystone structures hosting high insect diversity but are declining in numbers due to intensification of land use and the abandonment of traditional management. The loss of this vital habitat is resulting in a reduction of biodiversity, and this likely has consequences for ecosystem functioning, especially if functional diversity is reduced. A considerable amount of research has been done on predictors of beetle taxonomic diversity in veteran oaks, but predictors of functional diversity have remained largely unexplored. The aim of this study was to establish whether the features and surroundings of veteran oaks are related to functional diversity within three functional groups of beetles (decomposers, predators, and flower visitors) and determine whether species richness and functional diversity within the groups are dependent on the same predictors. Sampling was carried out intermittently between 2004 and 2011 on 61 veteran oaks in Southern Norway. Of the 876 beetle species that were collected, 359 were determined to be decomposers, 284 were predators, and 85 were flower visitors. Species richness and functional diversity in all groups were consistently higher in traps mounted on veteran oaks in forests than in open landscapes. However, additional predictors differed between groups, and for species richness and functional diversity. Decomposer species richness responded to tree vitality, while functional diversity responded to habitat connectivity, predator species richness responded to regrowth of shrubs while functional diversity responded to tree circumference, and flower visitor richness and functional diversity did not respond to any additional predictors. Previous studies have found that the features and surroundings of veteran oaks are important for conservation of taxonomic diversity, and the results from this study indicate that they are also important for functional diversity within multiple functional groups.  相似文献   

14.
1. Spatiotemporal patterns of canopy true bug diversity in forests of different tree species diversity have not yet been disentangled, although plant diversity has been shown to strongly impact the diversity and distribution of many insect communities. 2. Here we compare species richness of canopy true bugs across a tree diversity gradient ranging from simple beech to mixed forest stands. We analyse changes in community composition by additive partitioning of species diversity, for communities on various tree species, as well as for communities dwelling on beech alone. 3. Total species richness (γ‐diversity) and α‐diversity, and abundance of true bugs increased across the tree diversity gradient, while diversity changes were mediated by increased true bug abundance in the highly diverse forest stands. The same pattern was found for γ‐diversity in most functional guilds (e.g. forest specialists, herbivores, predators). Temporal and even more, spatial turnover (β‐diversity) among trees was closely related to tree diversity and accounted for ~90% of total γ‐diversity. 4. Results for beech alone were similar, but species turnover could not be related to the tree diversity gradient, and monthly turnover was higher compared to turnover among trees. 5. Our findings support the hypothesis that with increasing tree diversity and thereby increasing habitat heterogeneity, enhanced resource availability supports a greater number of individuals and species of true bugs. Tree species identity and the dissimilarity of true bug communities from tree to tree determine community patterns. 6. In conclusion, understanding diversity and distribution of insect communities in deciduous forests needs a perspective on patterns of spatiotemporal turnover. Heterogeneity among sites, tree species, as well as tree individuals contributed greatly to overall bug diversity.  相似文献   

15.
Different components of biodiversity may vary independently of each other along environmental gradients giving insights into the mechanisms that regulate species coexistence. In particular, the functional diversity (FD) or the presence of rare or endemic species in natural assemblages do not necessarily increase with species diversity. We studied if different components of plant species diversity (species richness, Simpson diversity, evenness) varied similarly to FD (measured as a generalization of the Simpson index) and rarity along grazing intensity and climatic gradients. Plots under different sheep grazing regimes (high and low intensity, abandonment) were surveyed in five locations along a climatic gradient in north-eastern Spain, from semi-arid lowland to moist upland locations. Variation in species diversity, functional diversity and rarity followed different patterns. Species diversity was lowest in water-stressed environments (arid locations and southern aspects) and increased with grazing more makedly in humid locations. The FD was comparable between the most species-poor and species-rich locations and decreased with grazing in the moistest location, i.e. where species diversity markedly increased. The FD did not show a strong correlation with species richness nor with the Simpson index and less specious communities could show the highest functional diversity. The rarest species in the region were more frequently found in the abandoned areas, which held the lowest species diversity. Consequently, the mechanisms that enhance the diversity of species do not necessarily support a functional differentiation among those species or the maintenance of rare species in a region. We hypothesize that the degree of dependence of functional diversity on species diversity might be mostly related to the amplitude of the species' traits pool and on how species partition the niche space available.  相似文献   

16.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

17.
Cacao agroforestry have been considered as biodiversity‐friendly farming practices by maintaining habitats for a high diversity of species in tropical landscapes. However, little information is available to evaluate whether this agrosystem can maintain functional diversity, given that agricultural changes can affect the functional components, but not the taxonomic one (e.g., species richness). Thus, considering functional traits improve the understanding of the agricultural impacts on biodiversity. Here, we measured functional diversity (functional richness‐FD, functional evenness‐FEve, and functional divergence‐Rao) and taxonomic diversity (species richness and Simpson index) to evaluate changes of bird diversity in cacao agroforestry in comparison with nearby mature forests (old‐growth forests) in the Brazilian Atlantic Forest. We used data from two landscapes with constraining areas of mature forest (49% Una and 4.8% Ilhéus) and cacao agroforestry cover (6% and 82%, respectively). To remove any bias of species richness and to evaluate assembly processes (functional overdispersion or clustering), all functional indices were adjusted using null models. Our analyses considered the entire community, as well as separately for forest specialists, habitat generalists, and birds that contribute to seed dispersal (frugivores/granivores) or invertebrate removal (insectivores). Our findings showed that small cacao agroforestry in the forested landscape sustains functional diversity (FD and FEve) as diverse as nearby forests when considering the entire community, forest specialist, and habitat generalists. However, we observed declines for frugivores/granivores and insectivores (FD and Rao). These responses of bird communities differed from those observed by taxonomic diversity, suggesting that even species‐rich communities in agroforestry may capture lower functional diversity. Furthermore, communities in both landscapes showed either functional clustering or neutral processes as the main driver of functional assembly. Functional clustering may indicate that local conditions and resources were changed or lost, while neutral assemblies may reveal high functional redundancy at the landscape scale. In Ilhéus, the neutral assembly predominance suggests an effect of functional homogenization between habitats. Thus, the conservation value of cacao agroforestry to harbor species‐rich communities and ecosystem functions relies on smallholder production with reduced farm management in a forested landscape. Finally, we emphasize that seed dispersers and insectivores should be the priority conservation targets in cacao systems.  相似文献   

18.
Plant functional group diversity promotes soil protist diversity   总被引:1,自引:0,他引:1  
Ledeganck P  Nijs I  Beyens L 《Protist》2003,154(2):239-249
We tested whether effects of plant diversity can propagate through food webs, down to heterotrophic protists not linked directly to plants. To this end we synthesised grassland ecosystems with varying numbers of plant functional groups (FGN) and assessed corresponding changes in testate amoebae communities. The number of plant species was kept constant. When FGN was increased from 1 to 3, species number and total community density of live testate amoebae were enhanced according to a linear and a saturating function, respectively. From FGN 1 to 2, the appearance of new testate amoebae species did not affect the presence of the resident species, whereas, from FGN 2 to 3 about one quarter of the resident testate amoebae species was replaced, without altering the total species number. Overall, density by species increased, while evenness of the testate amoebae community was not affected by FGN; although Trinema lineare, one of the most common species, became more abundant. The observed relationship between plant functional group diversity and testate amoebae diversity could shed new light on the biogeographical distribution patterns of protists.  相似文献   

19.
Biodiversity–ecosystem functioning (BEF) studies typically show that species richness enhances community biomass, but the underlying mechanisms remain debated. Here, we combine metrics from BEF research that distinguish the contribution of dominant species (selection effects, SE) from those due to positive interactions such as resource partitioning (complementarity effects, CE) with a functional trait approach in an attempt to reveal the functional characteristics of species that drive community biomass in species mixtures. In a biodiversity experiment with 16 plant species in monocultures, 4‐species and 16‐species mixtures, we used aboveground biomass to determine the relative contributions of CE and SE to biomass production in mixtures in the second, dry year of the experiment. We also measured root traits (specific root length, root length density, root tissue density and the deep root fraction) of each species in monocultures and linked the calculated community weighted mean (CWM) trait values and trait diversity of mixtures to CE and SE. In the second year of the experiment, community biomass, CE and SE increased compared to the first year. The contribution of SE to this positive effect was greater than that of CE. The increased contribution of SE was associated with root traits: SE increased most in communities with high abundance of species with deep, thick and dense roots. In contrast, changes in CE were not related to trait diversity or CWM trait values. Together, these results suggest that increased positive effects of species richness on community biomass in a dry year were mainly driven by increased dominance of deep‐rooting species, supporting the insurance hypothesis of biodiversity. Positive CE indicates that other positive interactions did occur, but we could not find evidence that belowground resource partitioning or facilitation via root trait diversity was important for community productivity in our biodiversity experiment.  相似文献   

20.
Habitat loss often reduces the number of species as well as functional diversity. Dramatic effects to species composition have also been shown, but changes to functional composition have so far been poorly documented, partly owing to a lack of appropriate indices. We here develop three new community indices (i.e. functional integrity, community integrity of ecological groups and community specialization) to investigate how habitat loss affects the diversity and composition of functional traits and species. We used data from more than 5000 individuals of 137 bird species captured in 57 sites in the Brazilian Atlantic Forest, a highly endangered biodiversity hotspot. Results indicate that habitat loss leads to a decrease in functional integrity while measures of functional diversity remain unchanged or are even positively affected. Changes to functional integrity were caused by (i) a decrease in the provisioning of some functions, and an increase in others; (ii) strong within-guild species turnover; and (iii) a replacement of specialists by generalists. Hence, communities from more deforested sites seem to provide different but not fewer functions. We show the importance of investigating changes to both diversity and composition of functional traits and species, as the effects of habitat loss on ecosystem functioning may be more complex than previously thought. Crucially, when only functional diversity is assessed, important changes to ecological functions may remain undetected and negative effects of habitat loss underestimated, thereby imperiling the application of effective conservation actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号