首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Artisanal coastal invertebrate fisheries in Galicia are socio-economically important and ecologically relevant. Their management, however, has been based on models of fish population dynamics appropriate for highly mobile demersal or pelagic resources and for industrial fisheries. These management systems focus on regulating fishing effort, but in coastal ecosystems activities that change or destruct key habitats may have a greater effect on population abundance than does fishing mortality. The Golfo Artabro was analysed as a representative example of a coastal ecosystem in Galicia, and the spider crab Maja squinado used as a model of an exploited coastal invertebrate, for which shallow coastal areas are key habitats for juvenile stages. The commercial legal gillnet fishery for the spider crab harvests adults during their reproductive migrations to deep waters and in their wintering habitats. Illegal fisheries operate in shallow waters. The annual rate of exploitation is >90%, and <10% of the primiparous females reproduce effectively at least once. A simple spatially-explicit cohort model was constructed to simulate the population dynamics of spider crab females. Yield- and egg-per-recruit analyses corresponding to different exploitation regimes were performed to compare management policies directed to control the fishing effort or to protect key habitats. It was found that the protection of juvenile habitats could allow increases in yield and reproductive effort higher than in the present system, with such protection based in the control of the fishing effort of the legal fishery. Additionally, there is an urgent need for alternative research and management strategies in artisanal coastal fisheries based on the implementation of a system of territorial use rights for fishers, the integration of the fishers into assessment and management processes, and the protection of key habitats (marine reserves) as a basic tool for the regulation of the fisheries.  相似文献   

3.

Aim

Large marine predators, such as cetaceans and sharks, play a crucial role in maintaining biodiversity patterns and ecosystem function, yet few estimates of their spatial distribution exist. We aimed to determine the species richness of large marine predators and investigate their fine-scale spatiotemporal distribution patterns to inform conservation management.

Location

The Hauraki Gulf/Tīkapa Moana/Te Moananui-ā-Toi, Aotearoa/New Zealand.

Methods

We conducted a replicate systematic aerial survey over 12 months. Flexible machine learning models were used to explore relationships between large marine predator occurrence (Bryde's whales, common and bottlenose dolphins, bronze whaler, pelagic and immature hammerhead sharks) and environmental and biotic variables, and predict their monthly distribution and associated spatially explicit uncertainty.

Results

We revealed that temporally dynamic variables, such as prey distribution and sea surface temperature, were important for predicting the occurrence of the study species and species groups. While there was variation in temporal and spatial distribution, predicted richness peaked in summer and was the highest in coastal habitats during that time, providing insight into changes in distributions over time and between species.

Main Conclusions

Temporal changes in distribution are not routinely accounted for in species distribution studies. Our approach highlights the value of multispecies surveys and the importance of considering temporally variable abiotic and biotic drivers for understanding biodiversity patterns when informing ecosystem-scale conservation planning and dynamic ocean management.  相似文献   

4.
Aim Spatial scale is critical for understanding and managing biological invasions. In providing direction to managing alien plant invasions, much emphasis is placed on collecting spatially explicit data. However, insufficient thought is often given to how the data are to be used, frequently resulting in the incompatibility of the data for different uses. This paper explores the role of spatial scale in interpreting, managing and monitoring alien plant invasions in a large protected area. Location Kruger National Park, South Africa. Methods Using 27,000 spatially‐explicit records of invasive alien plants for the Kruger National Park (> 20,000 km2) we assessed alien plant species richness per cell at nine different scales of resolution. Results When assessing the patterns of alien plants at the various scales of resolution, almost identical results are obtained when working at scales of quarter‐degree grids and quaternary watersheds (the fourth level category in South Africa's river basin classification system). Likewise, insights gained from working at resolutions of 0.1–0.5 km and 1–5 km are similar. At a scale of 0.1 × 0.1 km cells, only 0.4% of the Kruger National Park is invaded, whereas > 90% of the park is invaded when mapped at the quarter‐degree cell resolution. Main conclusions Selecting the appropriate scale of resolution is crucial when evaluating the distribution and abundance of alien plant invasions, understanding ecological processes, and operationalizing management applications and monitoring strategies. Quarter‐degree grids and quaternary watersheds are most useful at a regional or national scale. Grid cells of 1 to 25 km2 are generally useful for establishing priorities for and planning management interventions. Fine‐scale data are useful for informing management in areas which are small in extent; they also provide the detail appropriate for assessing patterns and rates of invasion.  相似文献   

5.
6.
7.
8.
9.
Aim  Identifying areas of high species richness is an important goal of conservation biogeography. In this study we compared alternative methods for generating climate-based estimates of spatial patterns of butterfly and mammal species richness.
Location  Egypt.
Methods  Data on the occurrence of butterflies and mammals in Egypt were taken from an electronic database compiled from museum records and the literature. Using M axent , species distribution models were built with these data and with variables describing climate and habitat. Species richness predictions were made by summing distribution models for individual species and by modelling observed species richness directly using the same environmental variables.
Results  Estimates of species richness from both methods correlated positively with each other and with observed species richness. Protected areas had higher species richness (both predicted and actual) than unprotected areas.
Main conclusions  Our results suggest that climate-based models of species richness could provide a rapid method for selecting potential areas for protection and thus have important implications for biodiversity conservation.  相似文献   

10.
11.
12.

Aim

Desert ecosystems, with their harsh environmental conditions, hold the key to understanding the responses of biodiversity to climate change. As desert community structure is influenced by processes acting at different spatial scales, studies combining multiple scales are essential for understanding the conservation requirements of desert biota. We investigated the role of environmental variables and biotic interactions in shaping broad and fine‐scale patterns of diversity and distribution of bats in arid environments to understand how the expansion of nondesert species can affect the long‐term conservation of desert biodiversity.

Location

Levant, Eastern Mediterranean.

Methods

We combine species distribution modelling and niche overlap statistics with a statistical model selection approach to integrate interspecific interactions into broadscale distribution models and fine‐scale analysis of ecological requirements. We focus on competition between desert bats and mesic species that recently expanded their distribution into arid environment following anthropogenic land‐use changes.

Results

We show that both climate and water availability limit bat distributions and diversity across spatial scales. The broadscale distribution of bats was determined by proximity to water and high temperatures, although the latter did not affect the distribution of mesic species. At the fine‐scale, high levels of bat activity and diversity were associated with increased water availability and warmer periods. Desert species were strongly associated with warmer and drier desert types. Range and niche overlap were high among potential competitors, but coexistence was facilitated through fine‐scale spatial partitioning of water resources.

Main conclusions

Adaptations to drier and warmer conditions allow desert‐obligate species to prevail in more arid environments. However, this competitive advantage may disappear as anthropogenic activities encroach further into desert habitats. We conclude that reduced water availability in arid environments under future climate change projections pose a major threat to desert wildlife because it can affect survival and reproductive success and may increase competition over remaining water resources.  相似文献   

13.
14.
15.
The present study aims at investigating the past and current trophic status of Lake Ossa and evaluating its potential impact on African manatee health. Lake Ossa is known as a refuge for the threatened African manatees in Cameroon. Little information exists on the water quality and health of the ecosystem as reflected by its chemical and biological characteristics. Aquatic biotic and abiotic parameters including water clarity, nitrogen, phosphorous, and chlorophyll concentrations were measured monthly during four months at each of 18 water sampling stations evenly distributed across the lake. These parameters were then compared with historical values obtained from the literature to examine the dynamic trophic state of Lake Ossa. Results indicate that Lake Ossa''s trophic state parameters doubled in only three decades (from 1985 to 2016), moving from a mesotrophic to a eutrophic state. The decreasing nutrient gradient moving from the mouth of the lake (in the south) to the north indicates that the flow of the adjacent Sanaga River is the primary source of nutrient input. Further analysis suggests that the poor transparency of the lake is not associated with chlorophyll concentrations but rather with the suspended sediments brought‐in by the Sanaga River. Consequently, our model demonstrated that despite nutrient enrichment, less than 5% of the lake bottom surface sustained submerged aquatic vegetation. Thus, shoreline emergent vegetation is the primary food available for the local manatee population. During the dry season, water recedes drastically and disconnects from the dominant shoreline emergent vegetation, decreasing accessibility for manatees. The current study revealed major environmental concerns (eutrophication and sedimentation) that may negatively impact habitat quality for manatees. The information from the results will be key for the development of the management plan of the lake and its manatee population. Efficient land use and water management across the entire watershed may be necessary to mitigate such issues.  相似文献   

16.
17.
Large river valleys (LRVs) are heterogeneous in habitat and rich in biodiversity, but they are largely overlooked in policies that prioritize conservation. Here, we aimed to identify plant diversity hotspots along LRVs based on species richness and spatial phylogenetics, evaluate current conservation effectiveness, determine gaps in the conservation networks, and offer suggestions for prioritizing conservation. We divided the study region into 50 km × 50 km grid cells and determined the distribution patterns of seed plants by studying 124,927 occurrence points belonging to 14,481 species, using different algorithms. We generated phylogenies for the plants using the “V. PhyloMaker” R package, determined spatial phylogenetics, and conducted correlation analyses between different distribution patterns and spatial phylogenetics. We evaluated the effectiveness of current conservation practices and discovered gaps of hotspots within the conservation networks. In the process, we identified 36 grid cells as hotspots (covering 10% of the total area) that contained 83.4% of the species. Fifty‐eight percent of the hotspot area falls under the protection of national nature reserves (NNRs) and 83% falls under national and provincial nature reserves (NRs), with 42% of the area identified as conservation gaps of NNRs and 17% of the area as gaps of NRs. The hotspots contained high proportions of endemic and threatened species, as did conservation gaps. Therefore, it is necessary to optimize the layout of current conservation networks, establish micro‐nature reserves, conduct targeted conservation priority planning focused on specific plant groups, and promote conservation awareness. Our results show that the conservation of three hotspots in Southwest China, in particular, is likely to positively affect the protection of biodiversity in the LRVs, especially with the participation of the neighboring countries, India, Myanmar, and Laos.  相似文献   

18.
Aim Few studies of comparative phylogeography have been conducted at very large spatial scales, encompassing species that are distributed across multiple continents. Several Pan‐American butterfly species associated with weedy, human‐modified habitats were studied using comparative phylogeographic tools to test for the congruence of demographic histories across a range of spatial scales and to investigate the effects of human‐facilitated range expansion. Location North and South America, mainly the southern United States, Brazil and Argentina. Methods The mitochondrial DNA cytochrome c oxidase subunit II region (COII) was sequenced for Hylephila phyleus, Lerodea eufala, Erynnis funeralis and Agraulis vanillae across their North and South American ranges. Data from these conspecifics were compared with variation in COII sequences between allopatric congener pairs on both continents whose ranges approximate the conspecifics and also share similar weedy habitat associations: Ancyloxypha numitor versus Ancyloxypha nitedula, Vanessa annabella versus Vanessa carye, and Euptoieta claudia versus Euptoieta hortensia. We tested for similarities in demographic histories within and across continents for each species using pairwise distances, population genetic statistics, mismatch distributions and deviations from mutation‐drift equilibrium. Results Mean pairwise divergence across continents was lower for Lerodea eufala and Hylephila phyleus (with several shared Pan‐American haplotypes each) compared with Erynnis funeralis and Agraulis vanillae (both with no shared haplotypes). Differentiation between congeneric species pairs was generally significantly higher than conspecific divergence across continents, but North and South American populations of A. vanillae were more divergent than V. annabella and V. carye. We found deviations from mutation‐drift equilibrium in A. vanillae. Population‐level variation was greater than the variation across continents for H. phyleus and L. eufala. Main conclusions We find little congruence in phylogeographic patterns among these taxa across continents, although similar demographic patterns can be detected at smaller regional levels. Except for Californian populations of some species, the North American distributions of these weedy butterfly species appear to largely pre‐date the influences of human‐facilitated range expansion.  相似文献   

19.
20.
Abstract

In many agricultural landscapes, significant biodiversity gains can be made by improving the ecological condition of degraded remnants of semi‐natural habitat. Recent emphasis has been on the level of management intervention required to initiate vegetation recovery in small forest remnants, but no comparable emphasis has been placed on benefits for invertebrate communities. In the Waikato region, New Zealand, we tested the effects of livestock exclusion, mammalian pest control, and their interaction, on leaf‐litter invertebrate communities in 30 forest remnants, using a space‐for‐time substitution approach. A total of 87 376 invertebrates were extracted from 964 leaf‐litter samples. Invertebrate density was an order of magnitude lower in remnants than in nearby large forest reserves. For key taxa, such as Diplopoda, Isopoda, Coleoptera and Mollusca, 10‐ to 100‐fold lower densities were recorded in remnants with no pest control, particularly where livestock were not excluded. By contrast, other taxa such as Thysanoptera and For‐micidae (Hymenoptera) had up to 100‐fold greater densities in remnants with recent stock exclusion and pest control. These changes led to a significant livestock exclusion x pest control interaction effect on the degree of invertebrate community dissimilarity between forest remnants and forest reserves. Using structural equation modelling, we found that treatment effects were largely mediated by a cascading series of indirect causal paths involving altered soil chemistry, vegetation composition, and litter mass relative to large forest reserves, although the livestock exclusion × pest control interaction was inadvertently confounded with differing slopes and areas of remnants in different treatments. Livestock exclusion and mammalian pest control have significant, but contrasting, effects on invertebrates in the first 10–20 years following livestock exclusion from forest remnants, with mammalian pest control having limited benefit for the leaf‐litter invertebrate fauna without livestock exclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号