首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The appropriate expression of 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is vital for mammalian reproduction, fetal growth and life maintenance. Several isoforms of 3β-HSD, the products of separate genes, have been identified in various species including man. Current investigations are targeted toward defining the processes that regulate the levels of specific isoforms in various steroidogenic tissues of man. High levels of expression of 3β-HSD were observed in placental tissues. It has been generally considered that the multinucleated syncytiotrophoblastic cells are the principal sites of 3β-HSD expression and, moreover, that 3β-HSD expression is intimately associated with cyclic AMP-promoted formation of syncytia. Herein we report the presence of 3β-HSD immunoreactive and mRNA species in uninucleate cytotrophoblasts in the chorion laeve, similar to that in syncytia but not cytotrophoblast placenta. In vitro, 3β-HSD levels in chorion laeve cytotrophoblasts were not increased with time nor after treatment with adenylate cyclase activators, whereas villous cytotrophoblasts spontaneously demonstrated progressive, increased 3β-HSD expression. Moreover, 3β-HSD synthesis appeared to precede morphologic syncytial formation. Thus high steroidogenic enzyme expression in placenta is not necessarily closely linked to formation of syncytia. Both Western immunoblot and enzymic activity analyses also indicated that the 3β-HSD expressed in these cytotrophoblastic populations was the 3β-HSD type I gene product (Mr, 45K) and not 3β-HSD type II (Mr, 44K) expressed in fetal testis. In cultures of fetal zone and definitive zone cell of human fetal adrenal, 3β-HSD expression was not detected until ACTH was added. ACTH, likely acting in a cyclic AMP-dependent process, induced 3β-HSD type II activity and mRNA expression. The higher level of 3β-HSD mRNA in definitive zone compared with fetal zone cells was associated with parallel increases in cortisol secretion relative to dehydroepiandrosterone sulfate formation.  相似文献   

4.
c-jun mRNA levels were increased in rat hepatoma cells (H4-II-E-C3) when exposed to hypotonie medium (205 mosmol/l) with a maximal induction observed after 1 h of hypotonie exposure. At this time point an approximate 5-fold increase in c-jun expression could be detected in relation to nonnotonic control incubations (305 mosmol/l). Hypertonic exposure (405 mosmol/1) had only a slight effect on c-jun expression. In contrast to the increased c-jun mRNA levels under hypotonic conditions, expression of the c-fos proto-oncogene was unaffected by changes in the osmolarity. The hypotonicity-induced increase in c-jun expression was also detectable in the presence of a protein kinase C (PKC) inhibitor. This indicates that PKC is not involved in the signal transduction pathway leading to c-jun expression upon hypotonic cell swelling in these cells.  相似文献   

5.
We have previously reported the co-localization [Cherradi et al., Endocrinology 134 (1994) 1358–1364] of 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) and cytochrome P450scc (cyt. P450scc) in the inner membrane and in the intermembrane contact sites of adrenocortical mitochondria. This observation raises the question of a possible functional association between the two proteins. Isolated bovine adrenocortical mitochondria are able to convert cholesterol to progesterone without the need of exogenous cofactors. An association of 3β-HSD and cyt. P450scc is observed during the purification of 3β-HSD from mitochondria. The behaviour of 3β-HSD on a column of Heparin-Sepharose is modified by the presence of cyt. P450scc. Immunoprecipitations from mitochondria with either anti-cyt. P450scc or anti 3β-HSD antibodies result in a co-precipitation of the two proteins. Both proteins engaged in these immunocomplexes are catalytically active. The interaction was further demonstrated by the surface plasmon resonance method using purified components. An affinity constant of 0.12 μM between 3β-HSD and P450scc was obtained. These observations suggest that P450scc and 3β-HSD may associate into a molecular complex in the mitochondrial compartment and may constitute a functional steroidogenic unit, thus opening new possibilities in the regulation of the production of progesterone and its flow in the adrenocortical cell.  相似文献   

6.
7.
Aldosterone was isolated from hamster adrenal cells and was identified by high performance liquid chromatography and thermospray mass spectroscopy analysis. Basal outputs from adrenal cell suspensions were of the same order of magnitude, 8.4 ± 1.9 ng and 8.0 ± 0.7 ng/2 h/50,000 cells, for aldosterone and corticosteroid, respectively. The outputs of aldosterone and corticosteroid increased with K+ concentrations to reach maxima of 3.3- and 1.6-fold at 10 meq/l of K+. AngiotensinII (AII) produced dose-dependent increases in aldosterone and corticosteroid outputs with maxima of 3- and 4-fold, respectively. In contrast, ACTH induced relatively no changes in aldosterone output, whereas dose-dependent increases in corticosteroid output were found. In time study experiments, with 10−8 M AII, aldosterone and corticosteroid outputs were maximally increased after 1 h (6-fold) and 3 h (1.8-fold), respectively. At 10−8 M, ACTH had a small stimulatory effect on aldosterone output after 6 h, whereas it provoked a gradual increase in corticosteroid output (up to 7-fold after 8 h of incubation). The effects of AII and ACTH on adrenal cytochrome P-45011β involved in the last steps of aldosterone formation were evaluated by c combined in vivo andin vitro experiments. The P-45011β mRNA level was increased by a low sodium intake but not by a 24 h ACTH stimulus. These results taken together indicate that ACTH and AII differentially regulate P-45011β. It is postulated that these two regulatory peptides regulate the hamster adrenal steroidogenesis by different P-450 genes.  相似文献   

8.
These studies were undertaken to examine the role of angiotensin II (A-II) in the regulation of adrenal glomerulosa cell differentiation. We were interested particularly in the ability of A-II to support aldosterone production in fetal adrenal cells. Many in vitro studies on acute A-II stimulation of aldosterone synthesis in adrenocortical cells have been documented. However, it is the long-term modification of steroid-metabolizing enzyme expression that leads to the formation and release of specific adrenal steroids. Herein, we used primary cultures of fetal bovine adrenal (FBA) cells to examine the effects of A-II on aldosterone production and the expression of aldosterone synthase cytochrome P450 (P450c18). A-II treatment caused the primary cultures to maintain glomerulosa cell functions. Cells treated for 3 days with A-II increased aldosterone production by 10-fold. A-II stimulation of aldosterone production occurred rapidly (within 30 min) and in a dose-dependent manner. In addition, A-II enhanced the activity of P450c18, the enzyme responsible for conversion of corticosterone to aldosterone. A-II also suppressed ACTH-promoted cortisol production, while increasing ACTH-stimulated release of aldosterone. It appears that these effects of chronic treatment with A-II were mediated through an A-II type 1 (AT1) receptor since the AT1 receptor antagonist, Dup753, blocked aldosterone production and the increased P450c18 activity. Receptor binding studies suggest that FBA cells possess approx. 110,000 AT1 binding sites/cell with Kd = 1.8 × 10−9 M. Via AT1 receptors, A-II was able to stimulate both inositol phosphates and cAMP production. The stimulation of cAMP production, however, was much less than seen following ACTH treatment. These data give support to the hypothesis that A-II is involved in the differentiation of fetal adrenal cells into glomerulosa cells. This process appears to be mediated through regulation of steroid-metabolizing enzyme expression and the activation of steroid production.  相似文献   

9.
We have shown previously that angiotensin-II (A-II) controls proto-oncogene (c-fos, jun-B and c-jun) mRNA accumulation in bovine adrenal fasciculata cells (BAC). Since BAC contain both subtypes (AT-1 and AT-2) of the A-II receptor, we have investigated which subtype was involved in the effect of A-II on proto-oncogene mRNA by using a selective antagonist for AT-1 (DUP 753) and for AT-2 (CGP 42112A). DUP 753, but not CGP 42112A, inhibited the stimulatory effect of A-II on proto-oncogene mRNA, with ID50s of 4 x 10(-7) M, 7 x 10(-7) M and 2 x 10(-6) M for c-fos, jun-B and c-jun, respectively. Neither of the two antagonists by themselves had a direct effect on proto-oncogene mRNA. As the A-II AT-1 receptors are coupled to the phospholipase C system in BAC, we have investigated whether the A-II effects on the proto-oncogenes were mediated by protein kinase C (PKC) or by Ca2+ calmodulin. First, activation of PKC by the phorbol ester, PMA, increased the level of three proto-oncogene mRNAs, whereas calcium ionophore had no effect. Second, staurosporine, a specific inhibitor of PKC, reduced the stimulatory action of A-II on proto-oncogene mRNA by 80-90%, whereas trifluoroperazine, an inhibitor of calmodulin, had no significant effect. These results demonstrate that the effects of A-II on proto-oncogene mRNA are mediated by AT1 receptor subtypes, mainly through activation of the PKC pathway.  相似文献   

10.
Prior in vitro investigations demonstrated that the P450 suicide substrate, 1-aminobenzotriazole (ABT), was a potent inhibitor of xenobiotic metabolism but had no effect on steroidogenic enzymes in the guinea pig adrenal cortex. Studies were done to determine if ABT administration to guinea pigs in vivo also selectively inhibited adrenal xenobiotic metabolism. At single doses of 25 or 50 mg/kg, ABT effected rapid decreases in spectrally detectable adrenal P450 concentrations. The higher dose caused approx. 75% decreases in microsomal and mitochondrial P450 levels within 2 h. The decreases in P450 were sustained for 24 h but concentrations returned to control levels within 72 h. Accompanying the ABT-induced decreases in adrenal P450 content were proportionately similar decreases in P450-mediated xenobiotic and steroid metabolism. Microsomal benzo(a)pyrene hydroxylase, benzphetamine N-demethylase, 17-hydroxylase and 21-hydroxylase activities were decreased to 20–25% of control values by the higher dose of ABT. Mitochondrial 11β-hydroxylase and cholesterol sidechain cleavage activities were similarly diminished by ABT treatment. Adrenal 3β-hydroxysteroid dehydrogenase activity, by contrast, was not affected by ABT, indicating specificity for P450-catalyzed reactions. The results demonstrate that ABT in vivo is a non-selective inhibitor of adrenal steroid- and xenobiotic-metabolizing P450 isozymes. The absence of ABT effects on steroid metabolism in vitro suggests that an extra-adrenal metabolite may mediate the in vivo inhibition of steroidogenesis.  相似文献   

11.
The Y-1 adrenal cell line was shown to produce 20-dihydroaldosterone from deoxycorticosterone. This compound was identified by GC-MS by comparison with the previously synthesized reference compound. Two other 18-hydroxylated metabolites were identified as 11β,18-dihydroxy-20-dihydroprogesterone from endogenous cholesterol and 18-hydroxy-20-dihydro-11-dehydrocorti-costerone from DOC. The conditions necessary for the synthesis of these compounds are culturing in 20% serum-supplemented medium and repeated incubations with the substrate. The production of 11β-hydroxylated steroids and that of 18-oxygenated steroids is stimulated differently by ACTH and angiotensin II suggesting the expression of two different enzymes, cytochrome P-45011β and cytochrome P-450aldo The Y-1 cell line can secrete either 11β-hydroxylated steroids characteristic of the glucocorticoid pathway or 18-oxygenated steroids characteristic of the mineralocorticoid pathway, which in vivo are generally produced in two different zones of the adrenal cortex. This cell line should be an interesting model for the study of the molecular mechanisms regulating the expression of these two enzymes involved in the final steps of the steroidogenic pathways.  相似文献   

12.
13.
Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3β-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3β-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3β-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3β-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3β-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3β-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3β-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.  相似文献   

14.
Several cytochrome P450s have been identified in guinea pig adrenal microsomes which are distinct from the known steroidogenic P450s, c17 and c21, and are immunochemically related to cytochrome P450s found in liver. One, a 52 K protein related to P450 I (CYP1), occurs almost exclusively in males, is localized to the inner zone, and is suppressed by ACTH. Its levels correlate with microsomal capacity for xenobiotic metabolism. The others, related to P450s II and III (CYP2 and 3), are more predominant in males, but not exclusive to them, are found in both the inner and outer zones, and are not suppressed by ACTH. Their functions remain to be elucidated. The male predominance of the CYP1-related protein has recently been shown to be due to suppression of the protein in females by estrogen. To determine if estrogen is also involved in the regulation of the CYP2-related proteins, ovariectomized and sham-operated animals were treated with a long-acting estrogen, estradiol valerate, or with the vehicle alone. These P450s reached male levels in ovariectomized females treated only with the vehicle. Their enhanced levels were suppressed by treatment with estrogen. Estrogen treatment also suppressed the levels of the P450s seen in sham-operated females. Endogenous estrogen produced similar effects. In hemi-ovariectomized females the contralateral ovary hypertrophied, a state in which estrogen levels would be maintained or increased. In these females no increase occurred in the immunodetectable P450s. In normal females, estrogen levels are low in prepubertal animals, rise at the time of puberty and drop again after ovarian cycling is completed. The CYP2-related proteins were present in adrenal microsomes of prepubertal females, but were suppressed after puberty. On the other hand, post-estrous females, in whom estrogen levels would be low, acquired male levels of these proteins in their adrenal microsomes. P450c17 and P450c21, as well as 3β-hydroxysteroid dehydrogenase, were not affected by surgery or estrogen. Taken together, these experiments indicate that suppression by estrogen in females can account, in large part, for the predominance of several immunochemical homologs of liver P450s in adult male guinea pig adrenals.  相似文献   

15.
16.
The role of insulin-like growth factor I (IGF-I) on the specific function of several steroidogenic cells has been recently reported. Since IGF-I is produced by several tissues, we have investigated whether bovine adrenal cells secrete this peptide. Purification of conditioned medium from adrenal cells incubated with [35S]methionine through affinity chromatography (monoclonal anti-IGF-I antibody), high pressure liquid chromatography, and polyacrylamide gel electrophoresis revealed a single band of similar Mr as pure recombinant IGF-I. Moreover, the purified adrenal-secreted IGF-I displaced bound 125I-IGF-I to its adrenal receptors, and pretreatment of adrenal cells with the purified peptide enhanced the acute corticotropin (ACTH)-induced cAMP production as recombinant IGF-I. The basal secretion of IGF-I (6 +/- 1 ng/48 h/10(6) cells) was stimulated 3-, 4.5-, and 9.5-fold by fibroblast growth factor, angiotensin II (A-II), and ACTH, respectively, but not by growth hormone. The stimulatory effects of A-II and ACTH were dose-dependent (ED50 congruent to 2.5 x 10(-8) and 1.5 x 10(-10) M, respectively), and the effects of both hormones were additive. Glucocorticoids were not the mediators of the effect of the two hormones on IGF-I secretion, since inhibition of their steroidogenic action by aminoglutethimide did not significantly modify IGF-I secretion. An immunoreactive IGF-I material was also secreted by mouse adrenal tumor cell line Y-1, but the stimulatory effect of ACTH was only 2-fold, and there was no effect of A-II. Since bovine adrenal cells contain specific IGF-I receptors and this peptide is required for the maintenance of some adrenal cell-specific function, the present data suggest that IGF-I may act in an autocrine fashion to stimulate adrenal cell differentiation stimulated by ACTH and A-II.  相似文献   

17.
Two isoforms of 11β-HSD exist; 11β-HSD1 is bi-directional (the reductase usually being predominant) and 11β-HSD2 functions as a dehydrogenase, conferring kidney mineralocorticoid specificity. We have previously described endogenous substances in human urine, “glycyrrhetinic acid-like factors (GALFs)”, which like licorice, inhibit the bi-directional 11β-HSD1 enzyme as well as the dehydrogenase reaction of 11β-HSD2.

Many of the more potent GALFs are derived from two major families of adrenal steroids, corticosterone and cortisol. For example, 35-tetrahydro-corticosterone, its derivative, 35-tetrahydro-11β-hydroxy-progesterone (produced by 21-deoxygenation of corticosterone in intestinal flora); 35-tetrahydro-11β-hydroxy-testosterone (produced by side chain cleavage of cortisol); are potent inhibitors of 11β-HSD1 and 11β-HSD2-dehydrogenase, with IC50's in range 0.26–3.0 μM, whereas their 11-keto-35-tetrahydro-derivatives inhibit 11β-HSD1 reductase, with IC50's in range 0.7–0.8 μM (their 35β-derivatives being completely inactive).

Inhibitors of 11β-HSD2 increase local cortisol levels, permitting it to act as a mineralocorticoid in kidney. Inhibitors of 11β-HSD1 dehydrogenase/11β-HSD1 reductase serve to adjust the set point of local deactivation/reactivation of cortisol in vascular and other glucocorticoid target tissues, including adipose, vascular, adrenal tissue, and the eye. These adrenally derived 11-oxygenated C21- and C19-steroidal substances may serve as 11β-HSD1- or 11β-HSD2-GALFs. We conclude that adrenally derived products are likely regulators of local cortisol bioactivity in humans.  相似文献   


18.
Cells obtained from 6 adult human adrenals or adrenal fragments were cultured in serum-free synthetic medium (McCoy's) in order to study the isolated effects of IGF-I on steroidogenesis and its interactions with ACTH. After addition of peptide, changes in the activities of steroidogenic enzymes were assessed by measuring certain steroids in the spent medium. These included pregnenolone, 17-hydroxypregnenolone (17-OH-Preg), dehydroepiandrosterone (DHA), 17-hydroxyprogesterone (17-OH-P), androstenedione (AD), 11-deoxycortisol and glucocorticoids (chiefly cortisol and its immediate precursors, 11-deoxycortisol and 17-OH-P) and cortisol itself.

The steroid responses obtained with repeated doses of IGF-I (40 ng/ml ≈ 10−9 M), added at 0, 48 and 72 h, over 4 days' culture were quite different from those obtained with repeated doses of ACTH (0.25 ng/ml ≈ 10−10 M). All the steroids measured increased with time of culture under the influence of ACTH and, apart from pregnenolone which peaked, tended to reach a plateau. With IGF-I, by contrast, DHA, AD, 11-deoxycortisol and glucocorticoid production increased initially, then decreased progressively, whereas pregnenolone, 17-OH-Preg and 17-OH-P production was either absent or negative.

Cumulative steroid production over 4 days reached similar levels in response to a single dose of IGF-I and/or ACTH, with two major exceptions: pregnenolone dropped significantly with IGF-I [46% ± 6 (SEM) as opposed to 93% ± 11 with ACTH, P < 0.005, N = 5], as did 17-OH-P (48% ± 11 vs 113% ± 8 with ACTH, P < 0.001, N = 6). Increased formation of down-stream metabolites (DHA, AD, 11-deoxycortisol and glucocorticoids) would suggest that IGF-I induced stimulation of the 17-, 21- and 11β-hydroxylases.

The responses to ACTH stimulation of cells which 4 days previously had been pre-treated with an initial and single dose of IGF-I and/or ACTH emphasized the impact of IGF-I on the 3-hydroxylation steps in cortisol biosynthesis. Compared with ACTH pre-treatment, the effects of which faded in the long term, pre-treatment with IGF-I resulted in a significantly increased steroidogenic response (P between < 0.05 and < 0.01). With the single exception of pregnenolone (43% ± 4.7), production of all the metabolites was amplified: 17-OH-Preg: 348% ± 88; DHA: 643% ± 127; 17-OH-P: 193% ± 36; AD: 725% ± 200; 11-deoxycortisol: 573% ± 110; cortisol: 1000%.

Our findings strongly suggest that IGF-I plays a major rôle in the regulation of steroidogenesis by promoting and maintaining enzymatic activity (17, 21- and 11β-hydroxylases) via which the function of ACTH is achieved, viz., biosynthesis of cortisol.  相似文献   


19.
Two molecular species of bovine P450(11β), P450(11β)-2 and P450(11β)-3 have been identified, in which the amino acid differences were found at the 6th, 36th and 82nd positions from the NH2-termini of the mature proteins. They catalyzed the 11β-, 18- and 19-hydroxylation and aldosterone formation from 11-deoxycorticosterone, and the rate of production of 18-hydroxycorticosterone and aldosterone by P450(11β)-3 was greater than that by P450(11β)-2 [Morohashi et al., J. Biochem. 107 (1990) 635–640].

In this study, chimeric clones were constructed whose 6th, 36th and 82nd amino acid residues were exchanged with each other. Two original clones and six chimeric clones were expressed in COS-7 cells, and their steroidogenic activities studied. The ratio of aldosterone or 18-hydroxycorticosterone production to corticosterone production by one clone was compared with that of the other. The ratios for the four clones having Gly36 [P450(11β)-3 type] were 0.08–0.22, whereas those for the clones having Ser36 [P450(11β)-2 type] were 0.03–0.05, suggesting that the Gly36 structure is important for aldosterone production.  相似文献   


20.
Cytochrome P450(11β) is deeply involved in the final steps of biosynthesis of mineralocorticoids. This paper deals with following issues about this enzyme. (1) The structure and function of the enzymes of various animal species are discussed. By making alignment of amino acid sequences of the enzymes, we identified peptide domains essential for the enzyme actions such as a putative steroid binding domain and a heme binding region. Estimates of molecular similarity among the P450(11β) family enzymes suggested that the enzymes having both 11β-hydroxylation activity and aldosterone (ALDO) synthetic activity of certain animals such as frog, cattle and pig are more similar to the ALDO synthases of the other animals, such as rat, mouse and human, than the 11β-hydroxylases of these animals. (2) The molecular nature of the P450(11β) family enzymes of genetically hypertensive rats as well as adrenal regeneration hypertension (ARH) rats is examined. (i) Mutation was found in the P450(11β) gene of Dahl's salt-resistant normotensive rat. Steroidogenic activity expressed by the mutated gene accounted well for abnormal plasma levels of steroid hormones in this rat. (ii) 11β-, 18- and 19-Hydroxylation activities of adrenal mitochondria prepared from spontaneously hypertensive rat (SHR), Wistar-Kyoto rat (WKY), and stroke-prone (SP)-SHR were not significantly different from each other. Levels of mRNA of ALDO synthase in adrenal glands of 50-week-old SHR was significantly lower than those of 10-week-old SHR, WKY and SHR-SP. (iii) No significant difference in 19-hydroxylation activity was found between adrenal mitochondria prepared from ARH rat and those from control rat. The level of message of ALDO synthase was lower in adrenal glands of ARH rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号