首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The acute radiosensitivity in vivo of the murine hematopoietic stroma for 1 MeV fission neutrons or 300 kVp X rays was determined. Two different assays were used: (1) an in vitro clonogenic assay for fibroblast precursor cells (CFU-F) and (2) subcutaneous grafting of femora or spleens. The number of stem cells (CFU-S) or precursor cells (CFU-C), which repopulated the subcutaneous implants, was used to measure the ability of the stroma to support hemopoiesis. The CFU-F were the most radiosensitive, and the survival curves after neutron and X irradiation were characterized by D0 values of 0.75 and 2.45 Gy, respectively. For regeneration of CFU-S and CFU-C in subcutaneously implanted femora, D0 values of 0.92 and 0.84 Gy after neutron irradiation and 2.78 and 2.61 Gy after X irradiation were found. The regeneration of CFU-S and CFU-C in subcutaneously implanted spleens was highly radioresistant as evidenced by D0 values of 2.29 and 1.49 Gy for survival curves obtained after neutron irradiation, and D0 values of 6.34 and 4.85 Gy after X irradiation. The fission-neutron RBE for all the cell populations was close to 3 and varied from 2.77 to 3.28. The higher RBE values observed for stromal cells, compared to the RBE of 2.1 reported previously for hemopoietic stem cells, indicate that stromal cells are relatively more sensitive than hemopoietic cells to neutron irradiation.  相似文献   

2.
3.
Oncogenic transformation by fractionated doses of neutrons   总被引:1,自引:0,他引:1  
Oncogenic transformation was assayed after C3H 10T1/2 cells were irradiated with monoenergetic neutrons; cells were exposed to 0.23-, 0.35-, 0.45-, 5.9-, and 13.7-MeV neutrons given singly or in five equal fractions over 8 h. At the biologically effective neutron energy of 0.45 MeV, enhancement of transformation was evident with some small fractionated doses (below 1 Gy). When transformation was examined as a function of neutron energy at 0.5 Gy, enhancement was seen for cells exposed to three of the five energies (0.35, 0.45, and 5.9 MeV). Enhancement was greatest for cells irradiated with 5.9-MeV neutrons. Of the neutron energies examined, 5.9-MeV neutrons had the lowest dose-averaged lineal energy and linear energy transfer. This suggests that enhancement of transformation by fractionated low doses of neutrons may be radiation-quality dependent.  相似文献   

4.
The relative potential of high- and low-LET radiation to induce preneoplastic alterations in rat tracheal epithelial cells was evaluated using a combined in vivo-cell culture model. The capacity of X rays and high- and low-dose-rate neutrons to induce preneoplastic changes in isolated rat tracheal epithelial cells and in the intact tissue was compared. The presence of altered populations was determined in culture in terms of the frequency of tracheal epithelial cell populations which exhibit enhanced growth capacity in culture and in terms of the induction of persistent morphological alterations in exposed transplanted tracheas. Prior to assaying for altered cells, tracheal epithelial cells were irradiated as part of the intact tissue or as single cells. Low- and high-LET radiation induced similar maximum frequencies of altered cells when cultures were exposed as single cells, although high-LET radiation was more radiobiologically effective (RBE = 20) than low-LET radiation. The most marked difference between high- and low-LET radiation was observed after irradiation of the intact tissue. Damage induced by low-LET radiation, giving rise to altered populations, was modified in the intact tissue, whereas similar damage induced by high-LET radiation was apparently not.  相似文献   

5.
The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year. Furthermore, a dose which had no effect on leakage caused a marked increase in collagen biosynthesis. Thus the present results do not support a causal relationship between exudation of vascular protein during pneumonitis and the later development of fibrosis.  相似文献   

6.
These studies have examined alterations in the in vivo growth properties of mammary epithelial cells isolated at 1, 4, and 16 weeks after in vivo irradiation with -137Cs gamma rays or fission-spectrum neutrons. Altered in vitro growth potential was characterized by the proliferation of epithelial foci (EF) from irradiated animals under conditions in which mammary cells from nonexposed animals senesced. These EF were further characterized based on their ability to be subcultured. Both gamma and neutron irradiation resulted in the appearance of cells capable of forming EF. Further, with increased time in situ between irradiation and cell isolation, the frequency of EF which were capable of being subcultured indefinitely (EFs) increased. Reducing the gamma-ray dose rate resulted in fewer EFs while reducing the neutron dose rate resulted in increased frequencies of EFs. These data confirm earlier observations following gamma irradiation and show these cellular changes are also observed following neutron irradiation. In addition, these data indicate that changes in dose rate primarily influence the emergence of immortalized cell populations.  相似文献   

7.
Response of cultured normal human mammary epithelial cells to X rays   总被引:1,自引:0,他引:1  
The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique.  相似文献   

8.
9.
Abstract. Studies were carried out to investigate proliferative changes in two murine experimental tumours in response to radiation. Results were generated using bro-modeoxyuridine labelling and flow cytometry. This study demonstrates the possible ambiguity of previous studies using tritiated thymidine in which inability to discriminate normal and tumour cell components in murine tumours may lead to different values for cell kinetic parameters. In particular, the sarcoma F appeared to have a growth fraction of 0.62 when all cells were considered; in reality the growth fraction of the tumour cells only (based on DNA content discrimination) was close to unity. Radiation, administered either as single or fractionated doses, caused little change in the proliferative characteristics of the sarcoma F tumour but had profound effects on the adenocarcinoma Rhodesia tumour. Major changes were the accumulation of cells in G2 for several days after the end of the radiation treatment in both tumours and a dramatic drop in labelling index of the Rhodesia tumour. In neither tumour was there any evidence to suggest an increase in tumour cell proliferation during or after the irradiations. The diploid cells within the sarcoma F tumour showed an initial depression of labelling index followed by a rapid increase overshooting the control labelling index at higher radiation doses. Much of the effects could be attributed to cell cycle delays.  相似文献   

10.
11.
The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.  相似文献   

12.
On Day 0, young adult female F344 rats were adrenalectomized and intrasplenically implanted with a pituitary gland and capsule containing estrone. All were thereafter given 2.5 mg deoxycorticosterone per week and the choice of saline or tap water. This treatment yields high prolactin levels and glucocorticoid deficiency (Prl+/Glc-). On Day +48, total recoverable mammary DNA was increased by more than sevenfold, tritiated thymidine uptake by nearly fourfold, and total mammary clonogens by about fivefold. Irradiation with 4, 40, and 80 cGy X rays on Day +48 increased total mammary carcinomas per rat day at risk linearly with dose, and 40 and 80 cGy significantly decreased first carcinoma latency. A dose of 40 cGy X rays on Day -1 yielded tumor latencies and frequencies insignificantly different from unirradiated controls and significantly different from the dose on Day +48. Total carcinomas per rat day at risk were better fit by a function of dose to the power 0.4 than by a linear function after exposure to 1, 10, and 20 cGy fission neutrons, and 10 and 20 cGy significantly shortened the time to appearance of the first cancer. In contrast to results with X rays, 10 cGy neutrons on Day -1 yielded tumor frequencies and latencies insignificantly different from 10 cGy neutrons on Day +48. The carcinogenic action of X rays was thus influenced by total clonogen numbers and/or proliferation rates; that of neutrons was not.  相似文献   

13.
Extension of previous investigations at this laboratory regarding life shortening and tumor induction in the mouse has provided more complete dose-response information in the low dose region of X rays and neutrons. A complete observation of survival and late pathology has been carried out on over 2000 BC3F1 female mice irradiated with single doses of 1.5 MeV neutrons (0.5, 1, 2, 4, 8, 16 cGy) and, for comparison, of X rays (4, 8, 16, 32, 64, 128, 256 cGy). Data analysis has shown that a significant life shortening is observable only for individual neutron doses not lower than 8 cGy. Nevertheless, assuming a linear nonthreshold form for the overall dose-effect relationships of both radiation qualities, an RBE value of 12.3 is obtained for the 1.5 MeV neutrons. The induction of solid tumors by neutrons becomes statistically significant at individual doses from 8 cGy and by X rays for doses larger than 1 Gy. Linear dependence on neutron dose appears adequate to interpret the data at low doses. A separate analysis of ovarian tumor induction substantiates the hypothesis of a threshold dose for the X rays, while this is not strictly needed to interpret the neutron data. A trend analysis conducted on the neoplasm incidence confirms the above findings. Death rates have been analyzed, and a general agreement between the shift to earlier times of these curves and tumor induction was found.  相似文献   

14.
Young adult CBA/H mice were exposed to graded doses of whole-body irradiation with either fast fission neutrons or 300 kVp X rays at center-line dose rates of 0.1 and 0.3 Gy/min, respectively. Dose-response curves were determined at Days 2 and 5 after irradiation for the total thymic cell survival and for the survival of thymocytes defined by monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, and -T-200 antibodies as measured by flow cytofluorometric analysis. Cell dose-response curves of thymocytes show, 2 days after irradiation, a two-component curve with a radiosensitive part and a part refractory to irradiation. The radiosensitive part of the dose survival curve of the Lyt-2+ cells, i.e., mainly cortical cells, has a D0 value of about 0.26 and 0.60 Gy for neutrons and X rays, respectively, whereas that of the other cell types has corresponding D0 values of about 0.30 and 0.70 Gy. The radiorefractory part of the dose-response curves cannot be detected beyond 5 days after irradiation. At that time, the Lyt-2+ cells are again most radiosensitive with a D0 value of 0.37 and 0.99 Gy for neutrons and X rays, respectively. The other measured cell types have corresponding D0 values of about 0.47 Gy. The fission neutron RBE values for the reduction in the thymocyte populations defined by either monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, or -T-200 antibodies to 1.0% vary from 2.6 to 2.8. Furthermore, the estimated D0 values of the Thy-1-, T-200- intrathymic precursor cells which repopulate the thymus during the bone marrow independent phase of the biphasic thymus regeneration after whole-body irradiation are 0.64-0.79 Gy for fission neutrons and 1.32-1.55 Gy for X rays.  相似文献   

15.
K Ando  S Koike  S Sato 《Radiation research》1992,131(2):157-161
We have previously proposed that survival curves for cells of murine NFSa fibrosarcomas after exposure to fast neutrons might demonstrate curvature when the neutron doses reach a level high enough to cure the fibrosarcomas. We report here that this is the case. Murine NFSa fibrosarcomas growing in the hind legs of syngeneic mice were exposed to either gamma rays or fast neutrons. The tumors were removed and retransplanted into fresh recipients to obtain 50% tumor cell doses, from which the dose-cell survival relationship was constructed. Survival curves showed continuous bending down to 10(-7), and were well fitted using the linear-quadratic model. The alpha and beta values for neutrons were larger than those for gamma rays. When the surviving fractions at experimental TCD50 doses were calculated using these values, comparable figures were obtained for neutrons and gamma rays. The RBEs for neutrons were comparable for the TCD50 and TD50 assays. Neutron RBE was independent of dose within a range of 5-28 Gy. The capacity of the tumors to repair the damage caused by large doses of neutrons was identical to that for small doses of neutrons, indicating that cells retained the capacity to repair neutron damage irrespective of the size of the dose.  相似文献   

16.
The effect of irradiation on the supportive role of the thymic stroma in T cell differentiation was investigated in a transplantation model using athymic nude mice and transplanted irradiated thymuses. In this model, neonatal CBA/H mice were exposed to graded doses of whole-body irradiation with fast fission neutrons of 1 MeV mean energy or 300 kVp X rays. The doses used varied from 2.75 up to 6.88 Gy fission neutrons and from 6.00 up to 15.00 Gy X rays at center-line dose rates of 0.10 and 0.30 Gy/min, respectively. Subsequently, the thymus was excised and a thymus lobe was transplanted under the kidney capsule of H-2 compatible nude mice. One and two months after transplantation, the T cell composition of the thymic transplant was investigated using immunohistology with monoclonal antibodies directed to the cell surface differentiation antigens Thy-1, Lyt-1, Lyt-2, MT-4, and T-200. Furthermore, the stromal cell composition of the thymic transplant was investigated with monoclonal antibodies directed to MHC antigens and with monoclonal antibodies defining different subsets of thymic stromal cells. To investigate the reconstitution capacity of the thymic transplant, the peripheral T cell number was measured using flow cytofluorometric analysis of nude spleen cells with the monoclonal antibodies anti-Thy-1, anti-Lyt-2, and anti-MT-4. The results of this investigation show that a neonatal thymus grafted in a nude mouse has a similar stromal and T cell composition as that of a normal thymus in situ. In addition, grafting of such a thymus results in a significant increase of the peripheral T cell number. Irradiation of the graft prior to transplantation has no effects on the stromal and T cell composition but the graft size decreases. This reduction of size shows a linear dose-response curve after neutron irradiation. The X-ray curve is linear for doses in excess of 6.00 Gy. The RBE for fission neutrons for the reduction of the relative thymic graft size to 10% was equal to 2.1. Furthermore, the peripheral T cell number decreases with increasing doses of irradiation given to the graft prior to transplantation. The present data indicate that the regenerative potential of thymic stromal cells is radiosensitive and is characterized by D0 values equal to 2.45 and 3.68 Gy for neutrons and X rays, respectively. In contrast, the ability of the thymic stromal cells to support T cell maturation is highly radioresistant.  相似文献   

17.
Irradiation with fractionated doses is a specific form of stress and the data concerning these problems are topical for recent radiobiology, radiology and oncology. Interest in this present paper is focused on tissue glycogenesis and lipogenesis from U-14C-glucose in vivo in rats irradiated with fractionated doses of 2.39 Gy once a week. Analyses were done after 1-6 fractions, up to total accumulated doses of 2.39, 4.78, 7.17, 9.76, 11.95 and 14.34 Gy, which means LD50/30 for this experimental model. Fractionated irradiation of rats led to glycogen deposition and increased incorporation of 14C-glucose into the liver, heart and skeletal muscles, but not into brain glycogen. The ascertained changes were not dose-dependent. 14C-glucose was incorporated into the liver and adipose tissue lipids to a small extent, and synthesis of liver cholesterol increased only after the 5th and 6th fractions. A decreased concentration of hepatic lipids, especially of cholesterol, was observed from the 3rd to the 6th fractions.  相似文献   

18.
Data are presented on the mean after survival of female B6CF1 mice exposed to single doses of neutrons (1 to 40 rad) or gamma rays (22.5, 45, and 90 rad). For gamma-ray exposures and for neutron exposures up to 10 rad, the dose-response curves are indistinguishable from linear; higher neutron doses produce significant departures and linearity. Consequently, in these data, an upper limit of the relative biological effectiveness (RBE) exists for life shortening from all causes of death after single neutron exposures; this value is 15.0 +/- 5.1. The RBE depends on the cause of death, ranging from 2 to 5 for lymphoreticular tumors to 23-24 for lung tumors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号