首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Habitat destruction is the leading cause of species extinctions. However, there is typically a time‐lag between the reduction in habitat area and the eventual disappearance of the remnant populations. These “surviving but ultimately doomed” species represent an extinction debt. Calculating the magnitude of such future extinction events has been hampered by potentially inaccurate assumptions about the slope of species–area relationships, which are habitat‐ and taxon‐specific. We overcome this challenge by applying a method that uses the historical sequence of deforestation in the Azorean Islands, to calculate realistic and ecologically‐adjusted species–area relationships. The results reveal dramatic and hitherto unrecognized levels of extinction debt, as a result of the extensive destruction of the native forest:>95%, in<600 yr. Our estimations suggest that more than half of the extant forest arthropod species, which have evolved in and are dependent on the native forest, might eventually be driven to extinction. Data on species abundances from Graciosa Island, where only a very small patch of secondary native vegetation still exists, as well as the number of species that have not been found in the last 45 yr, despite the extensive sampling effort, offer support to the predictions made. We argue that immediate action to restore and expand native forest habitat is required to avert the loss of numerous endemic species in the near future.  相似文献   

2.
3.
Janet Franklin  David W. Steadman 《Oikos》2008,117(12):1885-1891
Using data on prehistoric and modern birds from seven islands in the Kingdom of Tonga, we demonstrate that there is no positive relationship between species richness (S) and island area (A) over the observed range of A (1.8–259 km2). The uniform S‐values occur across more than three orders of magnitude of A when prehistoric data are included, and the strongest predictor of S on any island is the level of fossil sampling (number of identified bones). Below a minimum value for A (in Tonga < 1.8 km2), S declines to zero as A does the same. Within the ranges of island elevation (E) and inter‐island isolation (I) among the seven islands, neither E (11–312 m) nor I (0.6–38 km) has much if any effect on S. Under natural (pre‐human) conditions, a positive species‐area relationship may not be a valid generalization for birds on oceanic islands.  相似文献   

4.
Islands are bounded ecosystems and serve as excellent laboratories for assessing changes in Biodiversity. Some oceanic islands, such as Madagascar, Bermuda and notably the islands in the Pacific (e.g. Hawaii), are home to unique forms of endemic plants and animals that have evolved in isolation over millions of years. The palaeoecological record indicates that such islands are characterized by waves of extinctions concomitant with colonization by humans. By way of contrast, the biota of the islands of the north Atlantic (Greenland, Iceland and Faroe) do not follow the expected pattern and the few extinctions recorded are very localized. This is not a result of the scale of human impact, which is as great as on other islands, but relates to the virtual lack of endemics. The dearth of endemic forms and the disharmonic nature of these island communities indicates a youthful biota and the operation of severe filters and sweepstakes during colonisation over the last 10,000 years. This paper draws upon an extensive invertebrate fossil record to contrast and examine these spatial and temporal patterns in island Biodiversity.  相似文献   

5.
The Azores archipelago was selected as a case study since there are few studies on macroalgae introduction in oceanic islands. While at a global scale, around 3 % of macroalgae are considered non-indigenous; in the remote oceanic islands of the Azores, over 6 % of the marine algal flora is non-indigenous. The taxa distribution pattern of non-indigenous species in the Azores is significantly different from the distribution pattern in the globe. The most representative group was Rhodophyta species, being 84 % of the total non-indigenous macroalgae, mainly introduced via maritime traffic. This study highlights the vulnerability of remote islands to the introduction of macroalgae and the need to develop further studies on other archipelagos to understand whether the observed vulnerability is generally characteristic of oceanic islands. The development of local monitoring and mitigation programs and the necessity of regulatory and preventive measures for the maritime traffic vector are strongly suggested.  相似文献   

6.
Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants on oceanic islands. However, findings from individual islands have rarely been compared between islands within or between biogeographic regions. We present in this study the most comprehensive, standardized dataset to date on the global distribution of invasive plant species in natural areas of oceanic islands. We compiled lists of moderate (5–25% cover) and dominant (>25% cover) invasive plant species for 30 island groups from four oceanic regions (Atlantic, Caribbean, Pacific, and Western Indian Ocean). To assess consistency of plant behaviour across island groups, we also recorded present but not invasive species in each island group.We tested the importance of different factors discussed in the literature in predicting the number of invasive plant species per island group, including island area and isolation, habitat diversity, native species diversity, and human development. Further we investigated whether particular invasive species are consistently and predictably invasive across island archipelagos or whether island-specific factors are more important than species traits in explaining the invasion success of particular species.We found in total 383 non-native spermatophyte plants that were invasive in natural areas on at least one of the 30 studied island groups, with between 3 and 74 invaders per island group. Of these invaders about 50% (181 species) were dominants or co-dominants of a habitat in at least one island group. An extrapolation from species accumulation curves across the 30 island groups indicates that the total current flora of invasive plants on oceanic islands at latitudes between c. 35°N and 35°S may eventually consist of 500–800 spermatophyte species, with 250–350 of these being dominant invaders in at least one island group. The number of invaders per island group was well predicted by a combination of human development (measured by the gross domestic product (GDP) per capita), habitat diversity (number of habitat types), island age, and oceanic region (87% of variation explained). Island area, latitude, isolation from continents, number of present, non-native species with a known invasion history, and native species richness were not retained as significant factors in the multivariate models.Among 259 invaders present in at least five island groups, only 9 species were dominant invaders in at least 50% of island groups where they were present. Most species were invasive only in one to a few island groups although they were typically present in many more island groups. Consequently, similarity between island groups was low for invader floras but considerably higher for introduced (but not necessarily invasive) species – especially in pairs of island groups that are spatially close or similar in latitude. Hence, for invasive plants of natural areas, biotic homogenization among oceanic islands may be driven by the recurrent deliberate human introduction of the same species to different islands, while post-introduction processes during establishment and spread in natural areas tend to reduce similarity in invader composition between oceanic islands. We discuss a number of possible mechanisms, including time lags, propagule pressure, local biotic and abiotic factors, invader community assembly history, and genotypic differences that may explain the inconsistent performance of particular invasive species in different island groups.  相似文献   

7.
The characteristics of terrestrial vertebrates on oceanic islands are examined. They often include a reduced body size, a tolerance of conspecifics, flightlessness, a reduced basal rate of metabolism, and a propensity to enter torpor. On oceanic islands ectotherms frequently replace endotherms. These changes reduce the energy expenditure and resource requirements of vertebrates. Such reductions are permitted by the absence of mammalian predators and facilitate the survival of island endemics in the face of a restricted resource base and a variable environment through an increase in population size. Some insular species increase body size, but this occurs only when the resource base is large, due either to a fortuitously abundant resource, or to the absence of other species that exploit normally abundant resources. Some questions are posed to guide future work. They examine of the characteristics that permit species to disperse over water barriers, the conditions that require a reduction in resource use, the rapidity of response by immigrants to island conditions, whether supertramps show physiological differentiation with respect to island distance or size, and whether island size is absolute or relative to the size of the immigrants.  相似文献   

8.
9.
Most studies of exotic species invasions only consider the factors that affect the establishment of populations following release, yet this is only one step on the invasion pathway. Different factors are likely to influence which species are transported and released. Here, we examine the influence of species traits on the successful transition of species through several stages in the introduction pathway (transport, release, and establishment), using parrots (Aves: Psittaciformes) as a model system. We use a species‐level supertree of parrots to test for phylogenetic auto‐correlation in the introduction process. Our analyses find that different sets of variables are related to the probability that a species enters each stage on the invasion pathway. The availability of individuals for transport and release seems to be most important for passage through these stages, but has no obvious effect on establishment following release. Rather, establishment success is higher for sedentary species, and species with broad diets.  相似文献   

10.
Very small islands, on the order of a few hundred square metres in area, have rarely been the focus of ecological investigations. I sampled nine such islands in the central Exumas, Bahamas for arthropod species abundance and diversity using a combination of pitfall traps, pan traps and sticky traps. Three islands had no terrestrial vegetation, three islands contained only Sesuvium portulacastrum L., a salt‐tolerant perennial that had been experimentally introduced 10 years ago, and three islands supported one or two naturally occurring plant species. A relatively diverse arthropod assemblage was discovered, including representatives of 10 different orders of Crustacea and Insecta. Land hermit crabs were the most abundant crustaceans, and dipterans were the most abundant and speciose insects. Two of the most common insects were previously undescribed species. Measures of arthropod species abundance and diversity were not significantly different for vegetated vs. non‐vegetated islands. All 10 orders were present on bare islands, and nine of them were present on vegetated islands. Measures of arthropod species abundance and diversity were positively associated with island area, and negatively associated with distance from the nearest large island. Hypothesized food webs consist of several trophic levels and have strong allochthonous inputs. Tiny islands such as these hold insights into early successional processes and the base of insular food webs.  相似文献   

11.
12.
Competition and introduction regime shape exotic bird communities in Hawaii   总被引:3,自引:0,他引:3  
Complex combinations of historical and local-regional processes determine the assembly of ecological communities. We investigated such processes in the Hawaiian introduced avifauna, comprising 140 years of historical records of invasions and extinctions of birds. Here the particular introduction regime (i.e., colonization attempts and number of introduced species) and priority effects constitute the historical (and regional) component, and competition is the local component. These processes are theoretically supported by means of a Lotka–Volterra model of species competition, finding that changes in the specific introduction regime might result in different extinction dynamics. Both field data and model outcomes support the biotic resistance hypothesis, so that the invasibility of new incomers decrease with species richness. Finally, we found that the resistance to new invaders depends on the particular introduction regime. Thus, community assembly models built to predict the success of exotic species should consider more scenarios than random introduction regimes.  相似文献   

13.
To what degree juvenile migrant birds are able to correct for orientation errors or wind drift is still largely unknown. We studied the orientation of passerines on the Faroe Islands far off the normal migration routes of European migrants. The ability to compensate for displacement was tested in naturally occurring vagrants presumably displaced by wind and in birds experimentally displaced 1100 km from Denmark to the Faroes. The orientation was studied in orientation cages as well as in the free-flying birds after release by tracking departures using small radio transmitters. Both the naturally displaced and the experimentally displaced birds oriented in more easterly directions on the Faroes than was observed in Denmark prior to displacement. This pattern was even more pronounced in departure directions, perhaps because of wind influence. The clear directional compensation found even in experimentally displaced birds indicates that first-year birds can also possess the ability to correct for displacement in some circumstances, possibly involving either some primitive form of true navigation, or 'sign posts', but the cues used for this are highly speculative. We also found some indications of differences between species in the reaction to displacement. Such differences might be involved in the diversity of results reported in displacement studies so far.  相似文献   

14.
Summary To examine if differences in egg predation rates could explain differences in bird community composition, egg predation was studied in two years on small islands in a South Swedish lake and on the nearby mainland using both natural and artificial nests.In plots with similar vegetation, the combined density of ground- and tree-nesting bird species did not differ between the islands and the mainland. Egg predation rates were similar on islands and the mainland for natural Turdus nests in two years, and for artificial Turdus and Phylloscopus nests. Unmarked and unvisited experimental nests suffered similar rate of egg predation as marked and visited nests. Egg predation rates were higher on natural nests when artificial nests were also put out, increasing the total nest density. Initial egg predation rates in artificial nests were also higher than later when nest density had decreased by 75%.The egg predators involved differed for artificial Phylloscopus nests between the islands and the mainland. Small mammals were apparently responsible for 29% of the predation on the mainland, but none on the islands. Artificial Turdus nests near crow nests suffered from a higher egg predation rate than nests further away from crow nests. Daily survival rates of Turdus nests increased from the laying to the incubation and further to the fledging state.Egg predation can not explain differences in bird community composition between islands and mainland in the present case.  相似文献   

15.
Coral Reefs - Ecological interactions are found across ecosystems, facilitating comparison among systems with distinct species composition. The balance of positive and agonistic interactions among...  相似文献   

16.
17.
Invasive species pose significant threats to biodiversity, especially on islands. They cause extinctions and population declines, yet little is known about their consequences on the emergent, metacommunity-level patterns of native species in island assemblages. We investigated differences in species–area relationships, nestedness, and occupancy of 9 species of native land birds between island assemblages with and without invasive Norway rats (Rattus norvegicus) in the Falkland Archipelago. We found that species–area curves, nestedness, and individual species’ occurrences differed between island assemblages with and without rats. Rat-free islands had, on average, 2.1 more land bird species than rat-infested islands of similar size. Passerine bird communities on islands with and without rats were significantly nested, but nestedness was significantly higher on rat-free islands than on rat-infested islands. The presence of rats was associated with differences in the incidence of many, but not all bird species. On rat free islands the occurrence of all species increased with island area. The occurrence of most, albeit not all, bird species was lower on islands with than on islands without rats. Two species of conservation concern, Troglodytes aedon cobbi and Cinclodes antarcticus, were abundant on rat-free islands, but absent or found at very low frequencies on islands with rats. The occurrence of three species was not associated with the presence of rats. The patterns presented here can be used to evaluate the consequences of ongoing rat eradications for passerine diversity, distribution, and abundance.  相似文献   

18.
19.
Capsule: The diet of Yellow-legged Gulls Larus michahellis on an oceanic island, surrounded by deep waters without a wide shelf, was mainly composed of terrestrial invertebrates.

Aims: To study the trophic ecology of Yellow-legged Gulls on an island surrounded by deep waters, to quantify the importance of terrestrial prey items and their availability, and to evaluate the relative importance of nutritional values of terrestrial and marine resources.

Methods: Diet was monitored for one year. We assessed the relative contribution of the main prey items and their macronutrients through the study of pellets and faeces.

Results: Terrestrial invertebrates were the most frequently consumed prey items (frequency of occurrence (FO) 67%), followed by marine fish (Osteichthyes FO 33%). Coleoptera and Orthoptera were the most consumed terrestrial invertebrates and provided a high nutritional value. The rate of consumption of terrestrial invertebrates varied in synchrony with the breeding season, being higher in spring, indicating their potential importance for reproduction.

Conclusion: It is unusual that terrestrial invertebrates constitute a large proportion of the diet of large gulls, but they seemed to cover their trophic energy requirements during the reproductive period.  相似文献   


20.
Understanding speciation on oceanic islands is a major topic in current research on island biogeography. Within this context, it is not an easy task to differentiate between the influence of elevation as an indicator for habitat diversity and island age as an indicator for the time available for diversification. One reason for this is that erosion processes reduce the elevation of islands over time. In addition, the geographic distance to source ecosystems might differ among habitats, which could lead to habitat‐specific reduction of species immigration, niche occupation and diversification. We used the percentage of single island endemic species (pSIE) in five different zonal ecosystems (distributed in altitude) on the Canary Islands as an indicator for diversification. We tested whether diversification increases with altitude due to a greater ecological isolation of high elevation ecosystems on oceanic islands under the assumption of a low elevation source region on the mainland. In addition we tested whether the ‘hump‐shaped’ (unimodal) relationship between pSIE and island age as well as the linear relationship between species richness and pSIE is consistent across spatial scales. We also analyse a potential influence of island area and habitat area. We found that pSIE increases with elevation. The relations between species richness as well as age with pSIE are consistent across scales. We conclude that high elevation ecosystems are ecologically isolated. Surprisingly, the altitudinal belt with the strongest human influences has the highest values of pSIE. We successfully transfer the ‘general dynamic theory of island biogeography’ to the ecosystem scale, which provides multiple opportunities for future studies. With this approach we find that the effects of elevation on diversification can be separated from those of island age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号