首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Episome F' ts114 lac+ (F42-114) was transferred into Salmonella typhimurium carrying an F'his+ (FS400) episome, and fused episome F' ts114 lac+, his+ (F42-400) was obtained. Episome F42-400 could be transferred to S. typhimurium, Escherichia coli and Klebsiella pneumoniae. Identification of the episome was based on: (i) temperature sensitivity of the Lac+ and His+ phenotypes; (ii) the fact that F- segregants, obtained after temperature curing or acridine orange curing, were simultaneously Lac- and His-; and (iii) linkage of lac+ with his+ in episomal transfers to E. coli and S. typhimurium. The frequency of episome transfer was influenced by the genotype of the donor. Plasmid LT2, prevalent in S. typhimurium LT2 strains, was suggested to be responsible for the low fertility of S. typhimurium donors. Episome F42-400 was capable of chromosome mobilization, and the extent of chromosome mobilization was not influenced by the presence or absence of the histidine region on the donor chromosome. Growth in a defined medium with acridine orange was able to cure F42-400. The frequency of curing was increased (the frequency of His+ cells was 0.0001%) if the cells were grown at 40 C in the presence of acridine orange. Selection for temperature-resistant Lac+, His+ derivatives in a strain without histidine deletion yielded Hfr strains. However, similar and stronger selections in strains without the chromosomal histidine region failed to yield Hfr strains. Our inability to obtain Hfr's in strains without the chromosomal histidine region was explained by assuming that the episome F42-400 has lost the F sites involved in integration into the S. typhimurium chromosome.  相似文献   

2.
Summary We compared the transducing properties of Mucts62 and Mucts62/mini-Mu lysates, using Mu immune and non immune Rec+ and recA recipient strains. The Mu/mini-Mu lysates transduced all bacterial markers tested 10 times more efficiently than the Mucts62 lysates in Rec+ recipients. Most of the transductants obtained after infection with the Mu/mini-Mu lysates result from the substitution of the mutated gene of the recipient by the wild type allele from the donor, most probably carried on the gigantic variable end linked to the mini-Mu genome.Moreover the Mu/mini-Mu lysates gave a new type of Rec-independent transduction that we called mini-muduction. Mini-muduction requires the activity of Mu gene A and provides transductants which carry the transduced marker surrounded by two mini-Mu genomes similarly oriented, and inserted at random location in the recipient chromosome. The mini-Mu/transduced DNA/mini-Mu structures are able to transpose spontaneously, for instance into a transmissible plasmid, in the presence of Mu gene A product.  相似文献   

3.
Summary An episome, F 128, which carries approximately 8x104 base pairs of chromosomal DNA homologous to the lac pro region of the E. coli chromosome, has been found to integrate into the oriC region of the chromosome in a site specific reaction. While the event appears to be recA-dependent, no homology between the episome and this region of the chromosome was detected. The Hfr strains formed result from the integration of intact F 128 molecules. The structure of the Hfr strains generated has been determined and their transfer properties analyzed.  相似文献   

4.
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.  相似文献   

5.
We report experimental evidence that pULB113, an RP4::mini-Mu plasmid, mediates chromosome transfer in a strain of Erwinia carotovora subsp. chrysanthemi which does not accept the F episome. This allowed us to construct a genetic map of that strain by measuring the frequencies of cotransfer of different markers (thy, leu, pro, [his, trp], thyA, rpsL, ile).  相似文献   

6.
Events following prophage Mu induction.   总被引:13,自引:2,他引:11       下载免费PDF全文
Escherichia coli strains lysogenic for a thermoinducible Mu prophage (Mu cts62) undergo rapid lysis about 50 min after heat induction. Induction of Mu cts62 apparently causes damage to the host sequences in which Mu is inserted. The normal expression of A, BU, and X genes of Mu is needed for this specific deleterious effect on the prophage-containing host sequences. Mu deoxyribonucleic acid can be shown to reintegrate extensively at different sites on the host genome during the lytic cycle after prophage induction or after infection of sensitive cells by clear-plaque mutants of Mu. We estimate that approximately 10 copies of Mu deoxyribonucleic acid are inserted per chromosome during vegetative growth. The episome rescue method for detecting vegetative Mu deoxyribonucleic acid insertion, in which an episome is transferred from the lytically infected cells to F- receipient cells, can be applied to study Mu integration without requiring the host cells to survive. It also provides an easy system to isolate Mu insertions in transmissible episomes and plasmids.  相似文献   

7.
Summary Various F sex factors have been derived from F143, an episome extending from lysA to pheA. F143 derivatives carrying recA and lexB alleles and also mutations in genes thyA, argA, cysC were constructed as follows. Recombination was used as a means to generate genetically labelled F-primes. Using trimethoprim as agent of counterselection of Thy+ cells in thyA /F-thyA +bacteria, it was possible to collect, after transfer, F-primes modified by deletion of the thyA region or recombination between chromosome and episome. F-primes which had spontaneously recombined with the chromosome and integrated chromosomal markers, were also selected by transfer to proper F recipients. P1 transduction of a dominant marker allele into a strain homodiploid for a recessive allele was used to construct F-primes carrying mutations introduced by cotransduction. These F-primes have been useful to establish the dominance and complementation pattern of recA and lexB mutations (Morand, Goze and Devoret, accompanying paper; Glickman, Guijt and Morand, accompanying paper).  相似文献   

8.
We describe below the chemical synthesis of the right and left ends of bacteriophage Mu and characterize the activity of these synthetic ends in mini-Mu transposition. Mini-Mu plasmids were constructed which carry the synthetic Mu ends together with the Mu A and B genes under control of the bacteriophage λ pL promoter. Derepression of pL leads to a high frequency of mini-Mu transposition (5.6 × 10−2) which is dependent on the presence of the Mu ends and the Mu A and B proteins. Five deletion mutants in the Mu ends were tested in the mini-Mu transposition system and their effects on transposition are described.  相似文献   

9.
Conjugational gene transfer was established in Erwinia carotovora subsp. carotovora SCRI193 by using plasmid R68::Mu c+ to mobilize the chromosome into multiply mutant recipients. It was observed that although the plasmid alone mobilized markers randomly at a frequency of ca. 10(-5) chromosomal recombinants per donor, the presence of a Mu prophage on the chromosome of the donor increased the frequency of mobilization of markers adjacent to the prophage by up to 10-fold. Using this system it was possible to order 17 chromosomal mutations. The behavior of Mu in E. carotovora subsp. carotovora was also studied.  相似文献   

10.
Bacteriophage Mu DNA integration in Escherichia coli strains infected after alignment of chromosomal replication was analyzed by a sandwich hybridization assay. The results indicated that Mu integrated into chromosomal segments at various distances from oriC with similar kinetics. In an extension of these studies, various Hfr strains were infected after alignment of chromosomal replication, and Mu transposition was shut down early after infection. The positions of integrated Mu copies were inferred from the transfer kinetics of Mu to an F- strain. Our analysis indicated that the location of Mu DNA in the host chromosome was not dependent on the positions of host replication forks at the time of infection. However, the procedure for aligning chromosomal replication affected DNA transfer by various Hfr strains differently, and this effect could account for prior results suggesting preferential integration of Mu at host replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号