首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
近日节律是生命体生理及行为变量遵循内源性的以接近1个太阳日的周期进行循环的生物过程,人体近日节律调控机制及其相关疾病研究已成为当前生物医学新兴领域和研究热点。过去二十年间,以生物钟基因及其相互作用环路为核心的一系列机制研究不断取得新的进展,初步形成了近日节律的分子模型,近年来,生物钟基因在染色体重塑、转录翻译调控、转录后修饰等多个层次的调控模式得到深入的研究。同时,近日节律失控与肿瘤、代谢紊乱等临床疾病的相关性及其影响机的转化研究日益增多,形成了新兴的时间医学。本文谨就近年来近日节律分子机制及其疾病相关研究的概况和最新进展做一总结。  相似文献   

3.
4.
5.
The filamentous fungusNeurospora crassais one of the best organisms for analysing the molecular basis of the circadian rhythm observed in asexual spore formation, conidiation. Many clock mutants in which the circadian conidiation rhythm has different characteristics compared to those in the wild-type strain have been isolated since the early 1970s. With the cloning of one of these clock genes,frq, the molecular basis of the circadian clock inNeurosporahas become gradually clearer. Physiological and pharmacological studies have also contributed to our understanding of the physiological basis of the circadian clock inNeurospora. These studies strongly indicate that the circadian clock is based on or is closely related to a network of metabolic processes for cellular activities. Based on these studies, it may be possible to isolate new types of clock mutants which should contribute to a better understanding of the molecular basis of the circadian clock inNeurospora.  相似文献   

6.
7.
8.
9.
10.
Circadian clocks are intracellular molecular mechanisms that allow the cell to anticipate the time of day. We have previously reported that the intact rat heart expresses the major components of the circadian clock, of which its rhythmic expression in vivo is consistent with the operation of a fully functional clock mechanism. The present study exposes oscillations of circadian clock genes [brain and arylhydrocarbon receptor nuclear translocator-like protein 1 (bmal1), reverse strand of the c-erbaalpha gene (rev-erbaalpha), period 2 (per2), albumin D-element binding protein (dbp)] for isolated adult rat cardiomyocytes in culture. Acute (2 h) and/or chronic (continuous) treatment of cardiomyocytes with FCS (50% and 2.5%, respectively) results in rhythmic expression of circadian clock genes with periodicities of 20-24 h. In contrast, cardiomyocytes cultured in the absence of serum exhibit dramatically dampened oscillations in bmal1 and dbp only. Zeitgebers (timekeepers) are factors that influence the timing of the circadian clock. Glucose, which has been previously shown to reactivate circadian clock gene oscillations in fibroblasts, has no effect on the expression of circadian clock genes in adult rat cardiomyocytes, either in the absence or presence of serum. Exposure of adult rat cardiomyocytes to the sympathetic neurotransmitter norephinephrine (10 microM) for 2 h reinitiates rhythmic expression of circadian clock genes in a serum-independent manner. Oscillations in circadian clock genes were associated with 24-h oscillations in the metabolic genes pyruvate dehydrogenase kinase 4 (pdk4) and uncoupling protein 3 (ucp3). In conclusion, these data suggest that the circadian clock operates within the myocytes of the heart and that this molecular mechanism persists under standard cell culture conditions (i.e., 2.5% serum). Furthermore, our data suggest that norepinephrine, unlike glucose, influences the timing of the circadian clock within the heart and that the circadian clock may be a novel mechanism regulating myocardial metabolism.  相似文献   

11.
A wide variety of biochemical, physiological, and molecular processes are known to have daily rhythms driven by an endogenous circadian clock. While extensive research has greatly improved our understanding of the molecular mechanisms that constitute the circadian clock, the links between this clock and dependent processes have remained elusive. To address this gap in our knowledge, we have used RNA sequencing (RNA–seq) and DNA microarrays to systematically identify clock-controlled genes in the zebrafish pineal gland. In addition to a comprehensive view of the expression pattern of known clock components within this master clock tissue, this approach has revealed novel potential elements of the circadian timing system. We have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb plays a role in linking the pineal master clock with the periphery.  相似文献   

12.
Circadian rhythms: from gene expression to behavior   总被引:3,自引:0,他引:3  
Circadian rhythms regulate the functions of living systems at virtually every level of organization, from molecule to organism. In the past year, our understanding of the cellular and molecular processes involved in the generation and regulation of circadian rhythms has advanced considerably. New in vitro model systems for studying circadian oscillators have been developed, a potential regulatory role for cellular immediate-early genes in circadian behavior has been discovered, critical periods for macromolecular synthesis for progression of the circadian clock through its cycle have been defined, and studies of the Drosophila period gene have offered new insight into the clock mechanism. These findings are of particular interest because independent approaches using vertebrates, mollusks and Drosophila all point to a common theme that involves the expression of 'clock proteins' as the basis of the timing mechanism.  相似文献   

13.
14.
15.
16.
17.
松果体昼夜节律生物钟分子机制的研究进展   总被引:3,自引:0,他引:3  
Wang GQ  Tong J 《生理科学进展》2004,35(3):210-214
在各种非哺乳类脊椎动物中 ,松果体起着中枢昼夜节律振荡器的作用。近来 ,在鸟类松果体中相继发现了几种钟基因 ,如Per、Cry、Clock和Bmal等 ,其表达的时间变化规律与哺乳类视交叉上核 (SCN)的非常相似。钟的振荡由其自身调控反馈环路的转录和翻译组成 ,鸟类松果体和哺乳类SCN似乎具有共同的钟振荡基本分子构架 ;若干钟基因产物作为正向或负向调节子影响钟的振荡 ;昼夜性的控时机制同时也需要翻译后事件的参与。这些过程对钟振荡器的稳定性和 /或钟导引的光输入通路有着重要的调控作用  相似文献   

18.
19.
Matsuo T  Ishiura M 《FEBS letters》2011,585(10):1495-1502
The genome of the unicellular green alga Chlamydomonas reinhardtii has both plant-like and animal-like genes. It is of interest to know which types of clock genes this alga has. Recent forward and reverse genetic studies have revealed that its clock has both plant-like and algal clock components. In addition, since C. reinhardtii is a useful model organism also called "green yeast", the identification of clock genes will make C. reinhardtii a powerful model for studying the molecular basis of the eukaryotic circadian clock. In this review, we describe our forward genetic approach in C. reinhardtii and discuss some recent findings about its circadian clock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号