首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.  相似文献   

2.
SJL mice were injected intraperitoneally with adipocyte plasma membranes or with intrinsic membrane proteins obtained by extraction of plasma membranes with dimethylmaleic anhydride. Three days after the boost injection, the spleens were removed and fused with NS-1, a thioguanine-resistant myeloma cell line derived from P3X63 Ag8 (Balb/c). Following selection for hybrids with hypoxanthine, aminopterin, and thymidine, medium of the hybrid cells was tested for its ability to bind to the plasma membrane of the adipocyte and to stimulate the oxidation of D-(1-14C) glucose to 14CO2. Approximately 40% of the wells containing hybridomas derived from splenocytes of SJL mice immunized with plasma membranes produced immunoglobulin that bound to adipocyte plasma membranes. About 30% of these mimicked the ability of insulin to stimulate the oxidation of D-(1-14C) glucose to 14CO2 in adipocytes. Media from 51% of the wells containing hybridomas derived from splenocytes of SJL mice immunized with intrinsic membrane proteins produced immunoglobulin that bound to the plasma membrane and 48% of those stimulated glucose oxidation. The bioactivity of the hybrid cell media could be blocked by adsorption with intrinsic membrane proteins or by the removal of immunoglobulins using formalin-fixed Staphylococcus aureus. The hybrids generated in this study can be divided into three categories: (1) hybrids that secrete antibodies that can bind to plasma membranes and mimic insulin action of glucose transport; (2) hybrids that secrete antibodies that bind to plasma membranes but do not stimulate the oxidation of D-(1-14C) glucose to 14CO2; and (3) hybrids that produce no antimembrane antibodies. The data suggest that interaction of immunoglobulins with specific membrane proteins is essential in mimicking the action of insulin on glucose transport and oxidation in the rat adipocyte.  相似文献   

3.
High-affinity binding of insulin to receptors in human erythrocyte membranes occurred at the external surface, but not at the cytoplasmic surface of the plasma membrane, as assessed by insulin binding to right-side-out and inside-out membrane vesicles. Even after prolonged (3 h) incubation at 22°C, binding at the cytoplasmic membrane aspect remained negligible. The data indicate that the insulin receptor displays its hormone-binding site exclusively toward the extracellular space and that transmembrane mobility (“flip-flop”) of the receptor from one to the other membrane leaflet is severely restricted.  相似文献   

4.
Protease inhibitor (PI) therapy for the treatment of patients infected with human immunodeficiency virus is frequently associated with insulin resistance and diabetic complications. These adverse effects of PI treatment result to a large extent from their inhibition of insulin-stimulated glucose transport. Insulin receptor (IR) activators that enhance the insulin signaling pathway could be effective in treating this resistance. However, there are no agents reported that reverse inhibition of insulin action by PIs. Herein, we describe the effects of TLK19781. This compound is a non-peptide, small molecule, activator of the IR. We now report in cultured cells, made insulin resistant HIV by PI treatment, that TLK19781 both increased the content of insulin-stimulated GLUT4 at the plasma membrane, and enhanced insulin-stimulated glucose transport. In addition, oral administration of TLK19781 with the PI, indinavir improved glucose tolerance in rats made insulin resistant. These results suggest, therefore, that IR activators such as TLK19781 may be useful in treating the insulin resistance associated with PIs.  相似文献   

5.
IRTKS encodes a member of the IRSp53/MIM homology domain family, which has been shown to play an important role in the formation of plasma membrane protrusions. Although the phosphorylation of IRTKS occurs in response to insulin stimulation, the role of this protein in insulin signaling remains unknown. Here we show that IRTKS-deficient mice exhibit insulin resistance, including hyperglycemia, hyperinsulinemia, glucose intolerance, decreased insulin sensitivity, and increased hepatic glucose production. The administration of ectopic IRTKS can ameliorate the insulin resistance of IRTKS-deficient and diabetic mice. In parallel, the expression level of IRTKS was significantly decreased in diabetic mouse model. Furthermore, DNA hypermethylation of the IRTKS promoter was also observed in these subjects. We also show that IRTKS, as an adaptor of the insulin receptor (IR), modulates IR-IRS1-PI3K-AKT signaling via regulating the phosphorylation of IR. These findings add new insights into our understanding of insulin signaling and resistance.  相似文献   

6.
With the large-scale preparation described, as much as 1 kg of bovine liver can be processed, giving a yield of more than 1 g plasma membrane protein. From analytical and morphological criteria the plasma membrane fraction isolated mainly derives from bile-canalicular and contiguous areas of the hepatocytes.The insulin binding activity is quite similar to insulin receptors in otherr cell systems and membrane preparations. Insulin-degrading activity is very low in the isolated plasma fraction. Most of degrading activity is located in a microsomal membrane fraction. Neverthless the Km and the pH dependence of the insulin-degrading activity in both fractions are nearly identical.From these studies we conclude that binding and degradation of insulin are two independent processes located on different cell organelles.  相似文献   

7.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

8.
Exocytosis is a vesicle fusion process driven by soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin‐stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR‐Cas9 genome editing to delete the two tomosyn‐encoding genes in adipocytes. We observed that both basal and insulin‐stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α‐SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin‐stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn‐arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.  相似文献   

9.
A study of NADH ferricyanide reductase activity in oriented vesicles or open ghosts of human and porcine erythrocytes shows that the dehydrogenase activity can have three types of orientation in the membrane. There is activity which responds only to acceptors and NADH exclusively on the inside face, or exclusively on the outer surface. There is also activity which requires exposure of both sides of the membrane and thus is transmembranous. The transmembrane activity is inhibited by insulin, whereas the internal and external enzymes do not respond to insulin. The transmembrane dehydrogenase can be a basis for proton transport in the plasma membrane.  相似文献   

10.
A marked resistance to the stimulatory action of insulin on glucose metabolism has previously been shown in guinea pig, compared to rat, adipose tissue and isolated adipocytes. The mechanism of insulin resistance in isolated guinea pig adipocytes has, therefore, been examined by measuring 125I-insulin binding, the stimulatory effect of insulin on 3-0-methylglucose transport and on lipogenesis from [3-3H]glucose, the inhibitory effect of insulin on glucagon-stimulated glycerol release, and the translocation of glucose transporters in response to insulin. The translocation of glucose transporters was assessed by measuring the distribution of specific D-glucose-inhibitable [3H]cytochalasin B binding sites among the plasma, and high and low density microsomal membrane fractions prepared by differential centrifugation from basal and insulin-stimulated cells. At a glucose concentration (0.5 mM) where transport is thought to be rate-limiting for metabolism, insulin stimulates lipogenesis from 30 to 80 fmol/cell/90 min in guinea pig cells and from 25 to 380 fmol/cell/90 min in rat cells with half-maximal effects at approximately 100 pM in both cell types. Insulin similarly stimulates 3-O-methylglucose transport from 0.40 to 0.70 fmol/cell/min and from 0.24 to 3.60 fmol/cell/min in guinea pig and rat fat cells, respectively. Nevertheless, guinea pig cells bind more insulin per cell than rat cells, and insulin fully inhibits glucagon-stimulated glycerol release. In addition, the differences between guinea pig and rat cells in the stimulatory effect of insulin on lipogenesis and 3-O-methylglucose transport cannot be explained by the greater cell size of the former compared to the latter (0.18 and 0.09 micrograms of lipid/cell, respectively). However, the number of glucose transporters in the low density microsomal membrane fraction prepared from basal guinea pig cells is markedly reduced compared to that from rat fat cells (12 and 70 pmol/mg of membrane protein, respectively) and the translocation of intracellular glucose transporters to the plasma membrane fraction in response to insulin is correspondingly reduced. These results suggest that guinea pig adipocytes are markedly resistant to the stimulatory action of insulin on glucose transport and that this resistance is the consequence of a relative depletion in the number of intracellular glucose transporters.  相似文献   

11.
Insulin resistance is a major pathologic feature of human obesity and diabetes. Understanding the fundamental mechanisms underlying this insulin resistance has been advanced by the recent cloning of the genes encoding a family of facilitated diffusion glucose transporters which are expressed in characteristic patterns in mammalian tissues. Two of these transporters, GLUT1 and GLUT4, are present in muscle and adipose cells, tissues in which glucose transport is markedly stimulated by insulin. To understand the mechanisms underlying in vivo insulin resistance, regulation of these transporters is being investigated. Studies reveal divergent changes in the expression of GLUT1 and GLUT4 in a single cell type as well as tissue specific regulation. Importantly, alterations in glucose transport in rodent models of diabetes and in human obesity and diabetes cannot be entirely explained by changes in glucose transporter expression. This suggests that defects in glucose transporter function such as impaired translocation, fusion with the plasma membrane, or activation probably contribute importantly to in vivo insulin resistance.  相似文献   

12.
Objective: Plasma concentrations of interleukin‐6 (IL‐6), a proinflammatory cytokine produced and released in part by adipose tissue, are elevated in people with obesity and type 2 diabetes. Because recent studies suggest that markers of inflammation predict the development of type 2 diabetes, we examined whether circulating plasma IL‐6 concentrations were related to direct measures of insulin resistance and insulin secretory dysfunction in Pima Indians, a population with high rates of obesity and type 2 diabetes. Research Methods and Procedures: Fasting plasma IL‐6 concentrations (enzyme‐linked immunosorbent assay), body composition (DXA), insulin action (M; hyperinsulinemic euglycemic clamp), and acute insulin secretory responses to glucose (25 g intravenous glucose tolerance test) were measured in 58 Pima Indians without diabetes (24 women, 34 men). Results: Fasting plasma IL‐6 concentrations were positively correlated with percentage of body fat (r = 0.26, p = 0.049) and negatively correlated with M (r = ?0.28, p = 0.031), but were not related to acute insulin response (r = 0.13, p = 0.339). After adjusting for percentage of body fat, plasma IL‐6 was not related to M (partial r = ?0.23, p = 0.089). Discussion: Fasting plasma IL‐6 concentrations are positively related to adiposity and negatively related to insulin action in Pima Indians. The relationship between IL‐6 and insulin action seems to be mediated through adiposity.  相似文献   

13.
We studied the effects of electrical stimulation on insulin release from rat insulinoma (INS-1) cells. The anodal/cathodal biphasic stimulation (ACBPS) electrical waveform resulted in a voltage- and stimulation duration-dependent increase in insulin release. ACBPS elicited insulin release both in the presence and absence of glucose. Basal and ACBPS-induced insulin secretion could be inhibited by mitochondrial poisons and calcium channel blockers, indicating that insulin release was dependent on adenosine triphosphate (ATP) and the influx of calcium. ACBPS parameters that released insulin caused no detectable plasma membrane damage or cytotoxicity, although temporary morphological changes could be observed immediately after ACBPS. ACBPS did not alter the plasma membrane transmembrane potential but did cause pronounced uptake of MitoTracker Red into the mitochondrial membrane, indicating an increased mitochondrial membrane potential. While the ATP:ADP ratio after ACBPS did not change, the guanosine triphosphate (GTP) levels increased and increased GTP levels have previously been associated with insulin release in INS-1 cells. These results provide evidence that ACBPS can have significant biological effects on cells. In the case of INS-1 cells, ACBPS promotes insulin release without causing cytotoxicity.  相似文献   

14.
This study was designed to document whether the reported distribution of insulin receptors in small groups of receptor sites randomly distributed in the glycocalyx of adipocytes and isolated adipocyte plasma membranes was a naturally occurring phenomena or due to artifacts. Possible artifacts include: (1) oligomeric forms of ferritin in the ferritin-insulin preparation, (2) an uneven distribution of the glycocalyx on the plasma membrane, or (3) ligand-induced aggregation of occupied receptor complexes. Biogel A 1.5m chromatography of the ferritin-insulin conjugate revealed the ferritin in the ferritin-insulin complex to consist of 55% monomers, 15% dimers, and 30% oligomers. The monomer peak was purified (> 95%) for use in these studies. Cationic ferritin, a glycocalyx marker, when incubated with paraformaldehyde-fixed plasma membranes, was found to be uniformly distributed on the surface of the plasma membrane indicative of uniformly distributed glycocalyx. The ability to demonstrate and inhibit ligand-induced aggregation on the isolated plasma membrane was established with a multivalent ligand, ferritin-concanavalin A. More than 66% of the ferritin-concanavalin A receptors were found in large clusters of 5 or more and 34% as singletons or clusters of up to 4 when incubated at 24°C with fresh membranes. Only 38% of the ferritin-concanavalin A receptors were in large clusters; 62% were singletons or clusters up to 4 on membranes prefixed with paraformaldehyde before incubation. The distribution of the monomeric ferritin-insulin was similar on both adipocytes and purified adipocyte plasma membranes and was consistent with earlier reports with ferritin-insulin. The quantitative distribution of the monomeric ferritin-insulin as singletons or in groups of 2–6 was comparable between the intact cells and isolated membranes incubated at 24°C. The binding of 500 μUnits monomeric ferritin-insulin per ml to the isolated plasma membranes was studied under incubation conditions similar to those used with ferritin-concanavalin A. Under all three conditions, fresh membranes at 24°C and 0–4°C and prefixed membranes at 24°C, the pattern of distribution of the monomeric ferritin-insulin as singletons or groups of 2–6 was identical, indicating that the ligand was not causing aggregation into clusters as did the concanavalin A. Thus, the occurrence of insulin receptors in small groups appears to be a natural phenomenon in the plasma membrane structure of adipocytes.  相似文献   

15.
The pathophysiologic importance of insulin resistance in diseases such as obesity and diabetes mellitus has led to great interest in defining the mechanism of insulin action as well as the means to overcome the biochemical defects responsible for the resistance. Vanadium compounds have been discovered to mimic many of the metabolic actions of insulin both in vitro and in vivo and improve glycemic control in human subjects with diabetes mellitus. Apart from its direct insulinmimetic actions, we found that vanadate modulates insulin metabolic effects by enhancing insulin sensitivity and prolonging insulin action. All of these actions appear to be related to protein tyrosine phosphatase (PTP) inhibition. However, in contrast to its stimulatory effects, vanadate inhibits basal and insulin-stimulated system A amino acid uptake and cell proliferation. The mechanism of these actions also appears to be related to PTP inhibition, consistent with the multiple roles of PTPs in regulating signal transduction. While the precise biochemical pathway of vanadate action is not yet known, it is clearly different from that of insulin in that the insulin receptor and phosphatidylinositol 3-kinase do not seem to be essential for vanadate stimulation of glucose uptake and metabolism. The ability of vanadium compounds to bypass defects in insulin action in diseases characterized by insulin resistance and their apparent preferential metabolic versus mitogenic signaling profile make them attractive as potential pharmacological agents.  相似文献   

16.
The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075–11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.  相似文献   

17.
Insulin increases the exocytosis of many soluble and membrane proteins in adipocytes. This may reflect a general effect of insulin on protein export from the trans Golgi network. To test this hypothesis, we have compared the trafficking of the secreted serine protease adipsin and the integral membrane proteins GLUT4 and transferrin receptors in 3T3-L1 adipocytes. We show that adipsin is secreted from the trans Golgi network to the endosomal system, as ablation of endosomes using transferrin-HRP conjugates strongly inhibited adipsin secretion. Phospholipase D has been implicated in export from the trans Golgi network, and we show that insulin stimulates phospholipase D activity in these cells. Inhibition of phospholipase D action with butan-1-ol blocked adipsin secretion and resulted in accumulation of adipsin in trans Golgi network-derived vesicles. In contrast, butan-1-ol did not affect the insulin-stimulated movement of transferrin receptors to the plasma membrane, whereas this was abrogated following endosome ablation. GLUT4 trafficking to the cell surface does not utilise this pathway, as insulin-stimulated GLUT4 translocation is still observed after endosome ablation or inhibition of phospholipase D activity. Immunolabelling revealed that adipsin and GLUT4 are predominantly localised to distinct intracellular compartments. These data suggest that insulin stimulates the activity of the constitutive secretory pathway in adipocytes possibly by increasing the budding step at the TGN by a phospholipase D-dependent mechanism. This may have relevance for the secretion of other soluble molecules from these cells. This is not the pathway employed to deliver GLUT4 to the plasma membrane, arguing that insulin stimulates multiple pathways to the cell surface in adipocytes.  相似文献   

18.
Insulin resistance is characterized by impaired glucose utilization in the peripheral tissues, accelerated muscle protein degradation, impaired antioxidant defences and extensive cell death. Apparently, both insulin and IGF-1 at physiological concentrations support cell survival by phosphatidylinositol 3 kinase-dependent and independent mechanisms. Postprandial hyperglycemia and hyperinsulinemia are found in insulin resistance, which accompanies the so-called noninsulin dependent diabetes mellitus (diabetes type 2). Evidence also indicates that increased susceptibility of muscle cells and cardiomycoytes to oxidative stress is among the harmful complications of insulin resistance and diabetes. Limited knowledge showing benefits of preconditioning with anti- oxidants (vitamin C, E, a-lipoic acid, N-acetylcysteine) in order to protect insulin action under oxidative stress prompted the author to discuss the theoretical background to this approach. It should be stressed that antioxidant preconditioning is relevant to prevention of both diabetes- and insulin resistance-associated side-effects such as low viability and cell deletion. Furthermore, antioxidant conditioning promises to provide higher efficacy for clinical applications in myoblast transfer therapy and cardiomyoplasty.  相似文献   

19.
Objective: This study investigated whether a very‐lowcalorie dietary intervention (VLCD) may influence composition of skeletal muscle cell membrane phospholipid and composition and concentration of intramyocellular triglyceride (IMTG) in obese subjects. The working hypothesis proposed that a VLCD would decrease saturated fatty acids (FAs) and increase long‐chain polyunsaturated FAs (LCPUFAs) in muscular structural lipids, as such changes have been associated with improved insulin sensitivity. Research Methods and Procedures: Skeletal muscle biopsies (vastus lateralis) were obtained from 13 obese subjects (nine women) before and after 8 weeks on VLCD (~600 to 800 kcal/d). FA composition in muscle cell membrane phospholipid and concentration and FA composition of IMTG were determined by gas‐liquid chromatography. Results: Baseline BMI was 36.0 ± 3.4 kg/m2. Weight loss was 9.3 ± 1.1 kg (8.8 ± 1.1%; p < 0.0001); loss of adipose tissue was 5.9 ± 0.9 kg (p < 0.0001). Insulin resistance (by homeostasis model assessment) decreased (?44 ± 7%; p < 0.001). Muscle cell membrane phospholipid saturated FAs decreased (?3.2 ± 1.3%; p < 0.05), whereas monounsaturated FAs (4.3 ± 1.7%; p < 0.05), LCPUFAs (11 ± 6%; p < 0.05), and the ratio of LCPUFAs to saturated FAs (12 ± 5%; p < 0.05) increased. IMTG decreased, but not significantly (?5%). IMTG‐saturated FAs decreased (?3.3 ± 1.5%; p < 0.05), whereas LCPUFAn‐3 (29 ± 9%; p < 0.01), LCPUFAn‐6 (33 ± 9%; p < 0.01), and the ratio of LCPUFAs to saturated FAs (34 ± 8%; p < 0.001) increased. Plasma total cholesterol (?15 ± 6%; p < 0.05), low‐density lipoprotein‐cholesterol (?16 ± 5%; p < 0.01), high‐density lipoprotein‐cholesterol (?8 ± 2%; p < 0.01), and plasma triglyceride (?19 ± 12%; p = 0.10) all decreased during the VLCD. Discussion: Desaturation of both muscle cell membrane phospholipid and IMTG was significant but modest during a VLCD in obese subjects. Further research must delineate whether such changes in skeletal muscle structural and depot lipid composition themselves are enough to promote the observed improvements in insulin action.  相似文献   

20.
Objective : To investigate the effect of the K121Q plasma cell membrane glycoprotein (PC‐1) polymorphism on the components of the insulin resistance syndrome in a population‐based nationwide multicenter study in Spain. Research Methods and Procedures : The subjects of the study were 293 nonrelated adults (44.7% men and 55.3% women) ages 35 to 64 years randomly chosen from a nationwide population‐based survey on obesity and related conditions, including insulin resistance and cardiovascular risk factors. Obesity‐related anthropometric measurements included blood pressure, oral glucose tolerance test, lipid profile (total cholesterol, high‐density lipoprotein‐ and low‐density lipoprotein‐cholesterol, and triglycerides), plasma leptin, insulin levels by radioimmunoassay, and insulin resistance (homeostasis model assessment). K121Q PC‐1 genotypes were determined by restriction fragment‐length polymorphism‐polymerase chain reaction. Results : Overall Q allele frequency was 0.14, with no differences between obese and nonobese individuals (0.15 vs. 0.13). After adjustment for sex, age, BMI, and degree of glucose tolerance, the Q allele was associated with high plasma leptin and triglyceride levels, but not with insulin resistance. Discussion : The results showed that the K121Q PC‐1 polymorphism in the Spanish population has no significant impact on insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号