首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasites alter host energy homeostasis for their own development, but the mechanisms underlying this phenomenon remain largely unknown. Here, we show that Cotesia vestalis, an endoparasitic wasp of Plutella xylostella larvae, stimulates a reduction of host lipid levels. This process requires excess secretion of P. xylostella tachykinin (PxTK) peptides from enteroendocrine cells (EEs) in the midgut of the parasitized host larvae. We found that parasitization upregulates PxTK signaling to suppress lipogenesis in midgut enterocytes (ECs) in a non-cell-autonomous manner, and the reduced host lipid level benefits the development of wasp offspring and their subsequent parasitic ability. We further found that a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for PxTK induction, which in turn reduces the systemic lipid level of the host. Taken together, these findings illustrate a novel mechanism for parasite manipulation of host energy homeostasis by a symbiotic bracovirus gene to promote the development and increase the parasitic efficiency of an agriculturally important wasp species.  相似文献   

2.
Polydnaviruses (PDVs) are obligatory symbionts of parasitoid wasps and play an important role in suppressing host immune defenses. Although PDV genes that inhibit host melanization are known in Microplitis bracovirus, the functional homologs in Cotesia bracoviruses remain unknown. Here, we find that Cotesia vestalis bracovirus (CvBV) can inhibit hemolymph melanization of its host, Plutella xylostella larvae, during the early stages of parasitization, and that overexpression of highly expressed CvBV genes reduced host phenoloxidase activity. Furthermore, CvBV-7-1 in particular reduced host phenoloxidase activity within 12 h, and the injection of anti-CvBV-7-1 antibody increased the melanization of parasitized host larvae. Further analyses showed that CvBV-7-1 and three homologs from other Cotesia bracoviruses possessed a C-terminal leucine/isoleucine-rich region and had a similar function in inhibiting melanization. Therefore, a new family of bracovirus genes was proposed and named as C -terminal L eucine/isoleucine-rich P rotein (CLP). Ectopic expression of CvBV-7-1 in Drosophila hemocytes increased susceptibility to bacterial repression of melanization and reduced the melanotic encapsulation of parasitized D. melanogaster by the parasitoid Leptopilina boulardi. The formation rate of wasp pupae and the eclosion rate of C. vestalis were affected when the function of CvBV-7-1 was blocked. Our findings suggest that CLP genes from Cotesia bracoviruses encoded proteins that contain a C-terminal leucine/isoleucine-rich region and function as melanization inhibitors during the early stage of parasitization, which is important for successful parasitization.  相似文献   

3.
Some DNA viruses infect host animals usually by integrating their DNAs into the host genome. However, the mechanisms for integration remain largely unknown. Here, we find that Cotesia vestalis bracovirus (CvBV), a polydnavirus of the parasitic wasp C. vestalis (Haliday), integrates its DNA circles into host Plutella xylostella (L.) genome by two distinct strategies, conservatively and randomly, through high-throughput sequencing analysis. We confirmed that the conservatively integrating circles contain an essential “8+5” nucleotides motif which is required for integration. Then we find CvBV circles are integrated into the caterpillar’s genome in three temporal patterns, the early, mid and late stage-integration. We further identify that three CvBV-encoded integrases are responsible for some, but not all of the virus circle integrations, indeed they mainly participate in the processes of early stage-integration. Strikingly, we find two P. xylostella retroviral integrases (PxIN1 and PxIN2) are highly induced upon wasp parasitism, and PxIN1 is crucial for integration of some other early-integrated CvBV circles, such as CvBV_04, CvBV_12 and CvBV_24, while PxIN2 is important for integration of a late-integrated CvBV circle, CvBV_21. Our data uncover a novel mechanism in which CvBV integrates into the infected host genome, not only by utilizing its own integrases, but also by recruiting host enzymes. These findings will strongly deepen our understanding of how bracoviruses regulate and integrate into their hosts.  相似文献   

4.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

5.
6.
7.
8.
Although it is well known that the application of broad‐spectrum synthetic insecticides reduces the effectiveness of natural enemies, the details of the actual mechanisms, including the lethal and sublethal effects of this reduction, are not fully understood. The inhibitory effects of a pyrethroid insecticide (permethrin), Adion 20% EC on the flight responses, host‐searching behaviour and foraging behaviour of Cotesia vestalis (Hymenoptera: Braconidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), were investigated under laboratory conditions. In choice trials, the wasps showed significant preference for P. xylostella‐infested Komatsuna plants over insecticide‐treated plants, suggesting an inhibitory effect of the insecticide on the flight response of C. vestalis. When offered a pair of plants, the wasps showed a significant preference for P. xylostella‐infested plants compared to uninfested plants. However, significantly more wasps were attracted to infested permethrin‐treated plants than to uninfested plants, suggesting that the wasps are attracted to the volatile infochemicals from the infested plants, even if treated with permethrin. The searching time was significantly shorter and the mortality of C. vestalis adults on the insecticide‐treated plants significantly higher than in the control plants treated with distilled water. These results suggest that the application of the insecticide had an inhibitory effect on the wasps’‐searching behaviour and consequently reduced the effectiveness of C. vestalis as a biological control agent against P. xylostella. In addition, the strength of the inhibitory effect of permethrin on the attraction of the wasps to the plants is critical to the survival of C. vestalis. Our results suggest that the attraction of the wasps to the permethrin‐treated infested plants increases the risk of their exposure to this insecticide.  相似文献   

9.
In our recent paper in Plant Physiology, we showed that the Arabidopsis thaliana 10-kD acyl-CoA-binding protein, ACBP6, is subcellularly localized to the cytosol and that the overexpression of ACBP6 in transgenic Arabidopsis enhanced freezing tolerance. ACBP6-conferred freezing tolerance was independent of induced cold-regulated (COLD-RESPONSIVE) gene expression, but was correlated to an enhanced expression of phospholipase Dδ (PLDδ). Lipid analyses on cold-acclimated freezing-treated ACBP6-overexpressors revealed a decline in phosphatidylcholine (PC) and an elevation of phosphatidic acid (PA) in comparison to wild type. Furthermore, the His-tagged ACBP6 recombinant protein was observed using in vitro filter-binding assays to bind PC, but not PA or lysophosphatidylcholine. Taken together, our results implicate roles for ACBP6 in phospholipid metabolism that is related to gene regulation and PC-binding/transfer. This represents the first report demonstrating the in vitro binding of an ACBP to a phospholipid. The effect of ACBP6 on PLDδ expression is reminiscent of yeast 10-kD ACBP function in the regulation of genes associated with stress responses, fatty acid synthesis and phospholipid synthesis. However, the yeast ACBP regulates the expression of genes involved in phospholipid synthesis by donation of acyl-CoA esters and its binding to phospholipids remains to be demonstrated.Key words: acyl-CoA-binding protein, freezing tolerance, phosphatidylcholine-binding, phospholipid transfer  相似文献   

10.
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


11.
We investigated the effects of the presence of a selective insecticide, pyridalyl, in aqueous solutions of honey as food for adults of diamondback moth (DBM) Plutella xylostella (L.) and its larval parasitoid Cotesia vestalis (Halliday) on their performances. We used a commercial formulation of pyridalyl which contained 10% pyridalyl. Survival times of DBMs reared with honey solution with pyridalyl at 10 000‐fold dilution were not significantly different from those of DBMs reared with pure honey solution. However, at 1000‐fold and 100‐fold dilutions of pyridalyl in honey solution, survival times were significantly shorter than those with honey solution alone. By contrast, survival times of C. vestalis reared with honey solution with pyridalyl at 1000‐fold and 100‐fold dilution were not significantly different from those of C. vestalis reared with pure honey solution. Offering honey solution with pyridalyl at 100‐fold dilution to C. vestalis did not affect its parasitization ability or offspring sex ratio. The novel aspects of the use of selective pesticides to control DBMs using C. vestalis are discussed.  相似文献   

12.
Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl‐CoA‐binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3‐overexpressors (AtACBP3‐OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph (Colletotrichum siamense). Changes in protein expression in R. solani‐infected Arabidopsis OsACBP5‐overexpressors (OsACBP5‐OEs) were demonstrated using proteomic analysis. Biotic stress‐related proteins including cell wall‐related proteins such as FASCILIN‐LIKE ARABINOGALACTAN‐PROTEIN10, LEUCINE‐RICH REPEAT EXTENSIN‐LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4, and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL‐LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2, and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5‐OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5‐OEs conferred protection against various plant pathogens.  相似文献   

13.
For easy measurement of 5-keto D-gluconate (5KGA) and 2-keto D-gluconate (2KGA), two enzymes, 5KGA reductase (5KGR) and 2KGA reductase (2KGR) are useful. The gene for 5KGR has been reported, and a corresponding gene was found in the genome of Gluconobacter oxydans 621H and was identified as GOX2187. On the other hand, the gene for 2KGR was identified in this study as GOX0417 from the N-terminal amino acid sequence of the partially purified enzyme. Several plasmids were constructed to express GOX2187 and GOX0417, and the final constructed plasmids showed good expression of 5KGR and 2KGR in Escherichia coli. From the two E. coli transformants, large amounts of each enzyme were easily prepared after one column chromatography, and the preparation was ready to use for quantification of 5KGA or 2KGA.  相似文献   

14.
Cytosolic acyl-CoA-binding proteins (ACBPs) are small proteins (ca. 10 kDa) that bind long-chain acyl-CoAs and are involved in the storage and intracellular transport of acyl-CoAs. Previously, we have characterized an Arabidopsis thaliana cDNA encoding a novel membrane-associated ACBP, designated ACBP1, demonstrating the existence of a new form of ACBP in plants (M.-L. Chye, Plant Mol. Biol. 38 (1998) 827–838). ACBP1 likely participates in intermembrane lipid transport from the ER to the plasma membrane, where it could maintain a membrane-associated acyl pool (Chye et al., Plant J. 18 (1999) 205–214). Here we report the isolation of cDNAs encoding ACBP2 (M r 38 479) that shows conservation in the acyl-CoA-binding domain to previously reported ACBPs, and contains ankyrin repeats at its carboxy terminus. These repeats, which likely mediate protein-protein interactions, could constitute a potential docking site in ACBP2 for an enzyme that uses acyl-CoAs as substrate. In vitro binding assays on recombinant (His)6-ACBP2 expressed in Escherichia coli show that it binds 14[C]palmitoyl-CoA preferentially to 14[C]oleoyl-CoA. Analysis of the acyl-CoA-binding domain in ACBP2 was carried out by in vitro mutagenesis. Mutant forms of recombinant (His)6-ACBP2 with single amino acid substitutions at conserved residues within the acyl-CoA-binding domain were less effective in binding 14[C]palmitoyl-CoA. Northern blot analysis showed that the 1.6 kb ACBP2 mRNA, like that of ACBP1, is expressed in all plant organs. Analysis of the ACBP2 promoter revealed that, like the ACBP1 promoter, it lacks a TATA box suggesting the possibility of a housekeeping function for ACBP2 in plant lipid metabolism.  相似文献   

15.
Lysophospholipids are intermediates of phospholipid metabolism resulting from stress and lysophospholipases detoxify lysophosphatidylcholine (lysoPC). Many lysophospholipases have been characterized in mammals and bacteria, but few have been reported from plants. Arabidopsis thaliana lysophospholipase 2 (lysoPL2) (At1g52760) was identified as a protein interactor of acyl‐CoA‐binding protein 2 (ACBP2) in yeast two‐hybrid analysis and co‐immunoprecipitation assays. BLASTP analysis indicated that lysoPL2 showed ~35% amino acid identity to the lysoPL1 family. Co‐localization of autofluorescence‐tagged lysoPL2 and ACBP2 by confocal microscopy in agroinfiltrated tobacco suggests the plasma membrane as a site for their subcellular interaction. LysoPL2 mRNA was induced by zinc (Zn) and hydrogen peroxide (H2O2), and lysoPL2 knockout mutants showed enhanced sensitivity to Zn and H2O2 in comparison to wild type. LysoPL2‐overexpressing Arabidopsis was more tolerant to H2O2 and cadmium (Cd) than wild type, suggesting involvement of lysoPL2 in phospholipid repair following lipid peroxidation arising from metal‐induced stress. Lipid hydroperoxide (LOOH) contents in ACBP2‐overexpressors and lysoPL2‐overexpressors after Cd‐treatment were lower than wild type, indicating that ACBP2 and lysoPL2 confer protection during oxidative stress. A role for lysoPL2 in lysoPC detoxification was demonstrated when recombinant lysoPL2 was observed to degrade lysoPC in vitro. Filter‐binding assays and Lipidex competition assays showed that (His)6‐ACBP2 binds lysoPC in vitro. Binding was disrupted in a (His)6‐ACBP2 derivative lacking the acyl‐CoA‐binding domain, confirming that this domain confers lysoPC binding. These results suggest that ACBP2 can bind both lysoPC and lysoPL2 to promote the degradation of lysoPC in response to Cd‐induced oxidative stress.  相似文献   

16.
Purpose

The present study aimed to explore the binding ability of acyl-CoA binding protein 2 to fatty acid acyl-CoA esters and its effect on Monascus pigment production in M. ruber CICC41233.

Methods

The Mracbp2 gene from M. ruber CICC41233 was cloned with a total DNA and cDNA as the templates through the polymerase chain reaction. The cDNA of the Mracbp2 gene fragment was ligated to expression vector pGEX-6P-1 to construct pGEX-MrACBP2, which was expressed in Escherichia coli BL21 to obtain the fusion protein GST-MrACBP2 and then measure the binding ability of fatty acid acyl-CoA esters. Additionally, the DNA of the Mracbp2 gene fragment was ligated to expression vector pNeo0380 to construct pNeo0380-MrACBP2, which was homologously over-expressed in M. ruber CICC41233 to evaluate Monascus pigment production and fatty acid.

Results

The cloned Mracbp2 gene of the DNA and cDNA sequence was 1525 bp and 1329 bp in length, respectively. The microscale thermophoresis binding assay revealed that the purified GST-MrACBP2 had the highest affinity for palmitoyl-CoA (Kd =70.57 nM). Further, the Mracbp2 gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP-E was isolated. In the Monascus pigments fermentation, the expression level of the Mracbp2 gene was increased by 1.74-fold after 2 days and 2.38-fold after 6 days. The palmitic acid content and biomass in M. ruber ACBP2-E were significantly lower than that in M. ruber CICC41233 on 2 days and 6 days. However, compared with M. ruber CICC41233, the yields of total pigment, ethanol-soluble pigment, and water-soluble pigment in M. ruber ACBP2-E increased by 63.61%, 71.61%, and 29.70%, respectively.

Conclusions

The purified fusion protein GST-MrACBP2 exhibited the highest affinity for palmitoyl-CoA. The Mracbp2 gene was overexpressed in M. ruber CICC41233, which resulted in a decrease in palmitic acid and an increase in Monascus pigments. Overall, the effect of MrACBP2 on the synthesis of fatty acid and Monascus pigment was explored. This paper explored the effect of MrACBP2 on the fatty acid synthesis and the synthesis of Monascus pigment. The results indicated the regulation of fatty acid synthesis could affect Monascus pigment synthesis, providing a novel strategy for improving the yield of Monascus pigment.

  相似文献   

17.
To explore the effects of bottom-up and top-down forces on the relationships between a host, Plutella xylostella (L.) (Lepidoptera, Plutellidae), and its parasitoid, Cotesia vestalis (Haliday) (Hymenoptera, Braconidae), a short-term field experiment was established as a factorial experiment using three different host plants (Brassica pekinensis cv. Yuki F1, Brassica oleracea var. capitata cv. Midorimaru F1 and B. oleracea var. botrytis cv. Snow Crown) in the presence of C. vestalis at two different levels (low and high initial release). The tritrophic interactions were monitored by census counts of live adults 20?days after parasitoid release. The mean numbers of P. xylostella and C. vestalis adults were compared using log-linear analysis of deviance. Also, differences in the levels of parasitism were analysed using logistic analysis of deviance. There was a significant effect of host plant type on the abundance of P. xylostella, the abundance of C. vestalis and the percentage parasitism of P. xylostella by C. vestalis. The mean number of P. xylostella adults per cage on common cabbage or cauliflower was significantly greater than that on Chinese cabbage. The mean number of C. vestalis adults and the proportion of hosts attacked by C. vestalis per cage were significantly greater on Chinese cabbage compared with common cabbage or cauliflower. Indeed, initial parasitoid release did not significantly affect the abundance of P. xylostella but there was a significant influence of initial parasitoid release on the abundance of C. vestalis and the levels of parasitism of P. xylostella by C. vestalis. The mean number of C. vestalis adults and the proportion of P. xylostella parasitised by C. vestalis per cage were greater in high level of parasitoid release compared with low level of parasitoid release. However, there were no significant interacting effect of the factors (plant type?×?parasitoid initial abundance) on the abundance of P. xylostella, the population size of C. vestalis and parasitism of P. xylostella by C. vestalis.  相似文献   

18.
19.
Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of “biological” aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.  相似文献   

20.
Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2   总被引:3,自引:0,他引:3  
Cytosolic acyl-CoA binding proteins bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and pool formers. Recently, we have characterized Arabidopsis thaliana cDNAs encoding novel forms of ACBP, designated ACBP1 and ACBP2, that contain a hydrophobic domain at the N-terminus and show conservation at the acyl-CoA binding domain to cytosolic ACBPs. We have previously demonstrated that ACBP1 is membrane-associated in Arabidopsis. Here, western blot analysis of anti-ACBP2 antibodies on A. thaliana protein showed that ACBP2 is located in the microsome-containing membrane fraction and in the subcellular fraction containing large particles (mitochondria, chloroplasts and peroxisomes), resembling the subcellular localization of ACBP1. To further investigate the subcellular localization of ACBP2, we fused ACBP2 translationally in-frame to GFP. By means of particle gene bombardment, ACBP2-GFP and ACBP1-GFP fusion proteins were observed transiently expressed at the plasma membrane and at the endoplasmic reticulum in onion epidermal cells. GFP fusions with deletion derivatives of ACBP1 or ACBP2 lacking the transmembrane domain were impaired in membrane targeting. Our investigations also showed that when the transmembrane domain of ACBP1 or that of ACBP2 was fused with GFP, the fusion protein was targeted to the plasma membrane, thereby establishing their role in membrane targeting. The localization of ACBP1-GFP is consistent with our previous observations using immunoelectron microscopy whereby ACBP1 was localized to the plasma membrane and vesicles. We conclude that ACBP2, like ACBP1, is a membrane protein that likely functions in membrane-associated acyl-CoA transfer/metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号