首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent findings that prolonged expression of certain adenovirus (Ad) vector-encoded proteins, including human alpha1-antitrypsin (huAAT), mouse erythropoietin (EPO), and human factor IX, can be achieved in animals that do not mount an immune response to the reporter protein were obtained with mouse strains which have been shown to be capable of mounting a cellular immune response against Ad vector antigens. This suggests either that Ad vectors expressing nonimmunogenic transgenes fail to elicit a cellular immune response or that an Ad-specific cellular immune response does develop but is ineffective against cells expressing nonimmunogenic transgenes. Here we demonstrate that an Ad vector expressing huAAT administered by intravenous injection does stimulate an Ad-specific cellular immune response but that this response fails to abolish vector-directed gene expression in vivo. Moreover, expression of huAAT remained stable in animals stimulated by concurrent and multiple administrations of different Ad vectors or viruses. We also demonstrate prolonged expression of huAAT in CD1 mice transgenic for the huAAT gene, indicating that long-term expression is not restricted to C57BL/6 mice. These results demonstrate that under some circumstances, an Ad vector can direct prolonged expression of a nonimmunogenic transgene despite the presence of a robust Ad-specific cellular immune response.  相似文献   

2.
Zhang HG  Xie J  Xu L  Yang P  Xu X  Sun S  Wang Y  Curiel DT  Hsu HC  Mountz JD 《Journal of virology》2002,76(11):5692-5700
A major limitation of adenovirus (Ad) gene therapy product expression in the liver is subsequent elimination of the hepatocytes expressing the gene therapy product. This elimination is caused by both necrosis and apoptosis related to the innate and cell-mediated immune response to the Ad. Apoptosis of hepatocytes can be induced by the innate immune response by signaling through death domain receptors on hepatocytes including the tumor necrosis factor alpha (TNF-alpha) receptor (TNFR), Fas, and death domain receptors DR4 and DR5. We have previously shown that blocking signaling through TNFR enhances and prolongs gene therapy product expression in the liver. In the present study, we constructed an Ad that produces a soluble DR5-Fc (AdsDR5), which is capable of neutralizing TNF-related apoptosis-inducing ligand (TRAIL). AdsDR5 prevents TRAIL-mediated apoptosis of CD3-activated T cells and decreases hepatocyte apoptosis after AdCMVLacZ administration and enhances the level and duration of lacZ transgene expression in the liver. In addition to blocking TRAIL and directly inhibiting apoptosis, AdsDR5 decreases production of gamma interferon (IFN-gamma) and TNF-alpha and decreases NK cell activation, all of which limit Ad-mediated transgene expression in the liver. These results indicate that (i) AdsDR5 produces a DR5-Fc capable of neutralizing TRAIL, (ii) AdsDR5 can reduce activation of NK cells and reduce induction of IFN-gamma and TNF-alpha after Ad administration, and (iii) administration of AdsDR5 can enhance Ad gene therapy in the liver.  相似文献   

3.
Helper-dependent adenovirus (HD-Ad) vectors with all adenoviral genes deleted mediate very long-term expression of therapeutic transgenes in a variety of animal models of disease. These vectors are associated with reduced toxicity and improved safety relative to traditional early region 1 deletion first-generation Ad (FG-Ad) vectors. Many studies have clearly demonstrated that FG-Ad vectors induce innate and adaptive immune responses in vivo; however, a comprehensive analysis of host immune responses to HD-Ad vectors has not yet been performed. In DBA/2 mice, intravenous injection of HD-Ad vectors encoding LacZ (HD-AdLacZ) or a murine secreted alkaline phosphatase (HD-AdSEAP) induced an early expression of inflammatory cytokine and chemokine genes in the liver, including interferon-inducible protein 10, macrophage inflammatory protein 2, and tumor necrosis factor alpha, and were expressed in a pattern similar to that induced by FG-Ad vectors encoding AdSEAP. Like AdSEAP, and consistent with the pattern of cellular gene expression, HD-AdLacZ and HD-AdSEAP induced the recruitment of CD11b-positive leukocytes to the transduced liver within hours of administration. AdSEAP also induced a second phase of liver inflammation, consisting of inflammatory gene expression and CD3-positive lymphocytic infiltrates 7 days posttransduction. In contrast, beyond 24 h no infiltrates or expression of inflammatory genes was detected in the livers of mice receiving HD-AdSEAP. Despite the lack of liver inflammation at 7 days, Ad-specific cytotoxic T lymphocytes could be detected in mice receiving HD-AdSEAP. This lack of liver inflammation was not due to reduced transduction since levels of transgene expression and the amounts of vector DNA in the liver were equivalent in mice receiving HD-AdSEAP and AdSEAP. These results demonstrate that HD-Ad vectors induce intact innate but attenuated adaptive immune responses in vivo.  相似文献   

4.
The innate immune response against replication-defective adenoviruses (Ad) is poorly defined. We and others have previously observed striking differences in the rate at which the Ad vector itself or the virus encoding a variety of transgenes is eliminated in different mouse strains. Here, we report that Ad infection of BALB/ mice is associated with sixfold-higher levels of serum alanine aminotransferase and that Ad transgenes induce two- to threefold-higher levels of intrahepatic NK cells and NK activity compared to C57BL/6 mice. The increase in NK activation in BALB/c mice was associated with approximately 4-fold higher level of mRNA expression of a newly described NKG2 receptor activator, H-60, as well as increased expression of interleukin-12 and gamma interferon mRNAs in BALB/c mice compared to C57BL/6 mice. NK depletion in BALB/c mice or defective NK function in C3H beige mice extended transgene expression compared to their appropriate controls, and attenuation of NK together with CD8 T-cell function had a synergistic effect. These findings indicate that there are intrinsic differences in the innate immune responses of different mouse strains to Ad and Ad transgenes and that NK cells, in cooperation with CD8 T cells, play a pivotal role in the early extinction of transgene expression in BALB/c mice.  相似文献   

5.
Although intraocular tumors reside in an immune-privileged environment, T cells can circumvent immune privilege and mediate tumor rejection without inducing damage to normal ocular tissue. In this study, we used a well-characterized tumor, Ad5E1 (adenovirus type 5 early region 1), to analyze the role of CD8+ T cells in the pristine rejection of intraocular tumors. It has been previously documented that Ad5E1 tumor rejection can occur in the absence of CD8+ T cells. However, here we find that CD8+ T cells infiltrated intraocular Ad5E1 tumors in C57BL/6 mice. Surprisingly, CD8+ T cells from tumor-rejector mice could mediate intraocular tumor rejection following adoptive transfer to SCID mice. In determining the mechanisms behind CD8+ T cell-mediated tumor rejection, we discovered that antitumor CTL activity was neither observed nor necessary for rejection of the intraocular tumors. CD8+ T cells from rejector mice did not produce IFN-gamma in response to Ad5E1 tumor Ags or use FasL to mediate intraocular tumor rejection. Also, CD8+ T cells did not use perforin or TRAIL, as CD8+ T cells from perforin knockout (KO) and TRAIL KO mice conferred protection to SCID recipient mice following adoptive transfer. We discovered that CD8+ T cells used TNF-alpha to mediate tumor rejection, because Ad5E1 tumor cells were highly sensitive to TNF-alpha-induced apoptosis and CD8+ T cells from TNF-alpha KO mice did not protect SCID mice from progressive Ad5E1 tumor growth. The results indicate that CD8+ T cells circumvent immune privilege and mediate intraocular tumor rejection by a TNF-alpha-dependent manner while leaving the eye intact and vision preserved.  相似文献   

6.
7.
First-generation adenovirus vectors will have limited application in gene therapy for chronic diseases because of destructive host immune responses. Important immune effectors include CD8+ T cells, which mediate target cell destruction and ablate transgene expression, and B cells, which produce neutralizing antibodies that block effective readministration of vector. Previous studies indicated that activation of CD4+ T cells by virus capsid proteins is necessary for full realization of effector function of CD8+ T cells and B cells. In this paper, we present a strategy for preventing CD4+ T-cell activation by an adenovirus vector delivered to mouse liver and lung tissues which is based on interfering with T-cell priming via CD40 ligand-CD40 interactions. Adenovirus transgene expression was stabilized in mice genetically deficient in CD40 ligand (CD40L), and neutralizing antibody to adenovirus did not develop, allowing efficient readministration of vector. A transient blockade of T-cell activation with an antibody to CD40L infused into the animal at the time of adenovirus vector-mediated gene transfer led to stabilization of transgene expression and diminished production of neutralizing antibody, allowing readministration of vector. In vitro T-cell assays suggested that a block in the primary activation of CD4+ T cells was responsible for the lack of B-cell- and cytotoxic-T-cell-dependent responses. This suggests a strategy for improving the potential of adenovirus vectors based on administration of an antibody to CD40L at the time of vector administration.  相似文献   

8.
E1-deleted adenoviral recombinants most commonly based on the human serotype 5 (AdHu5) have been shown thus far to induce unsurpassed transgene product-specific CD8(+) T cell responses. A large percentage of the adult human population carries neutralizing Abs due to natural exposures to AdHu5 virus. To circumvent reduction of the efficacy of adenovirus (Ad) vector-based vaccines by neutralizing Abs to the vaccine carrier, we developed E1-deleted adenoviral vaccine carriers based on simian serotypes. One of these carriers, termed AdC68, expressing a codon-optimized truncated form of gag of HIV-1 was shown previously to induce a potent transgene product-specific CD8(+) T cell response in mice. We constructed a second chimpanzee adenovirus vaccine vector, termed AdC6, also expressing the truncated gag of HIV-1. This vector, which belongs to a different serotype than the AdC68 virus, induces high frequencies of gag-specific CD8(+) T cells in mice including those pre-exposed to AdHu5 virus. Generation of an additional E1-deleted adenoviral vector of chimpanzee origin allows for sequential booster immunizations with heterologous vaccine carriers. In this study, we show that such heterologous prime boost regimens based on E1-deleted adenoviral vectors of different serotypes expressing the same transgene product are highly efficient in increasing the transgene product-specific CD8(+) T cell response. They are equivalent to sequential vaccinations with an E1-deleted Ad vector followed by booster immunization with a poxvirus vector and they surpass regimens based on DNA vaccine prime followed by a recombinant adenoviral vector boost.  相似文献   

9.
Adenovirus serotype 5 (Ad5) vectors containing Ad B-group fibers have become increasingly popular as gene transfer vectors because they efficiently transduce human cell types that are relatively refractory to Ad5 infection. So far, most B-group fiber-containing vectors have been first-generation vectors, deleted of E1 and/or E3 genes. Transduction with these vectors, however, results in viral gene expression and is associated with cytotoxicity and immune responses against transduced cells. To circumvent these problems, we developed fiber-chimeric Ad vectors devoid of all viral genes that were produced either by the homologous recombination of first-generation vectors or by using the Cre/lox-based helper virus system. In this study we compared early steps of infection between first-generation (35-kb genome) and Ad vectors devoid of all viral genes with genome sizes of 28 kb and 12.6 kb. All vectors possessed an Ad35-derived fiber knob domain, which uses CD46 as a primary attachment receptor. Using immortalized human hematopoietic cell lines and primary human CD34-positive hematopoietic cells, we found that the Ad genome size did not affect the efficiency of virus attachment to and internalization into cells. Furthermore, independently of the genome length and structure, all vectors migrated to the nucleus through late endosomal and lysosomal cellular compartments. However, the vector containing the short 12.6-kb genome was unable to efficiently escape from endosomes and deliver its DNA into the nucleus. Moreover, compared to other vectors, these Ad particles were less stable and had an abnormal capsid protein composition, including a lack of capsid-stabilizing protein IX. Our data indicate that the size and structure of the packaged viral genomes can affect the integrity of Ad particles, which in turn results in lower infectivity of Ad vectors.  相似文献   

10.
Although the anterior chamber of the eye expresses immune privilege, some ocular tumors succumb to immune rejection. Previous studies demonstrated that adenovirus-induced tumors, adenovirus type 5 early region 1 (Ad5E1), underwent immune rejection following transplantation into the anterior chamber of syngeneic mice. Intraocular tumor rejection required CD4(+) T cells, but did not require the following: 1) CD8(+) T cells, 2) B cells, 3) TNF, 4) perforin, 5) Fas ligand, or 6) NK cells. This study demonstrates that CD4(+) T cell-dependent tumor rejection does not occur in IFN-gamma-deficient mice. Ad5E1 tumor cells expressed DR5 receptor for TRAIL and were susceptible to TRAIL-induced apoptosis. Although IFN-gamma did not directly induce apoptosis of the tumor cells, it rendered them 3-fold more susceptible to TRAIL-induced apoptosis. Both CD4(+) T cells and corneal endothelial cells expressed TRAIL and induced apoptosis of Ad5E1 tumor cells. The results suggest that Ad5E1 tumor rejection occurs via TRAIL-induced apoptosis as follows: 1) tumor cells express TRAIL-R2 and are susceptible to TRAIL-induced apoptosis, 2) IFN-gamma enhances TRAIL expression on CD4(+) T cells and ocular cells, 3) IFN-gamma enhances tumor cell susceptibility to TRAIL-induced apoptosis, 4) apoptotic tumor cells are found in the eyes of rejector mice, but not in the eyes of IFN-gamma knockout mice that fail to reject intraocular tumors, 5) CD4(+) T cells and corneal endothelial cells express TRAIL and induce apoptosis of tumor cells, and 6) apoptosis induced by either CD4(+) T cells or corneal cells can be blocked with anti-TRAIL Ab.  相似文献   

11.
The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.  相似文献   

12.
Immunity to allogeneic MHC Ags is weak in rodent livers, raising questions as to the mechanisms that might control responses in this organ. Infection with an adenovirus vector reveals that T cell-mediated immunity to nonself-Ags in the liver is self-limiting. Virus-induced liver injury decreases and coincides with disappearance of virus-specific CTL, concomitant to an increase of apoptotic T cells early after infection. But whereas death in CD4 cells is independent of Fas, perforin, and TNF-alpha, that of CD8 cells requires Fas and not perforin or TNF-alpha pathways. Fas ligand is expressed on liver-infiltrating cells, pointing to death by fratricide that causes almost complete disappearance of virus-specific CTL 4 wk after infection. CTL elimination is virus dose dependent, and high doses induced high alanine aminotransferase values, elevated expression of Fas ligand on CD8 cells, and increased CD8 cell migration into the infected liver.  相似文献   

13.
Expression of adenovirus (Ad) serotype 2 or 5 (Ad2/5) E1A or human papillomavirus (HPV)16 E7 reportedly sensitizes cells to lysis by macrophages. Macrophages possess several mechanisms to kill tumor cells including TNF-alpha, NO, reactive oxygen intermediates (ROI), and Fas ligand (FasL). E1A sensitizes cells to apoptosis by TNF-alpha, and macrophages kill E1A-expressing cells, in part through the elaboration of TNF-alpha. However, E1A also up-regulates the expression of 70-kDa heat shock protein, a protein that inhibits killing by TNF-alpha and NO, thereby protecting cells from lysis by macrophages. Unlike E1A, E7 does not sensitize cells to killing by TNF-alpha, and the effector mechanism(s) used by macrophages to kill E7-expressing cells remain undefined. The purpose of this study was to further define the capacity of and the effector mechanisms used by macrophages to kill tumor cells that express Ad5 E1A or HPV16 E7. We found that Ad5 E1A, but not HPV16 E7, sensitized tumor cells to lysis by macrophages. Using macrophages derived from mice unable to make TNF-alpha, NO, ROI, or FasL, we determined that macrophages used NO, and to a lesser extent TNF-alpha, but not FasL or ROI, to kill E1A-expressing cells. Through the use of S-nitroso-N-acetylpenicillamine, which releases NO upon exposure to an aqueous environment, E1A was shown to directly sensitize tumor cells to NO-induced death. E1A sensitized tumor cells to lysis by macrophages despite up-regulating the expression of 70-kDa heat shock protein. In summary, E1A, but not E7, sensitized tumor cells to lysis by macrophages. Macrophages killed E1A-expressing cells through NO- and TNF-alpha-dependent mechanisms.  相似文献   

14.
15.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

16.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   

17.
BACKGROUND: The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII. METHODS: We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA). Plasmids were delivered with and without SB transposase to mouse liver by rapid, high-volume tail-vein injection. We studied the duration of expressed therapeutic enzyme activity, transgene presence by PCR, lysosomal pathology by toluidine blue staining and cell-mediated immune response histologically and by immunohistochemical staining. RESULTS: Transgene frequency, distribution of transgene and enzyme expression in liver and the level of transgenic enzyme required for amelioration of lysosomal pathology were estimated in MPS I and VII mice. Without immunomodulation, initial GUSB and IDUA activities in plasma reached > 100-fold of wild-type (WT) levels but fell to background within 4 weeks post-injection. In immunomodulated transposon-treated MPS I mice plasma IDUA persisted for over 3 months at up to 100-fold WT activity in one-third of MPS I mice, which was sufficient to reverse lysosomal pathology in the liver and, partially, in distant organs. Histological and immunohistochemical examination of liver sections in IDUA transposon-treated WT mice revealed inflammation 10 days post-injection consisting predominantly of mononuclear cells, some of which were CD4- or CD8-positive. CONCLUSIONS: Our results demonstrate the feasibility of achieving prolonged expression of lysosomal enzymes in the liver and reversing MPS disease in adult mice with a single dose of therapeutic SB transposons.  相似文献   

18.
Adenovirus (Ad) vectors are one of the most commonly used viral vectors in gene therapy clinical trials. However, they elicit a robust innate immune response and inflammatory responses. Improvement of the therapeutic index of Ad vector gene therapy requires elucidation of the mechanism of Ad vector-induced inflammation and cytokine/chemokine production as well as development of the safer vector. In the present study, we found that the fiber-modified Ad vector containing poly-lysine peptides in the fiber knob showed much lower serum IL-6 and aspartate aminotransferase levels (as a maker of liver toxicity) than the conventional Ad vector after i.v. administration, although the modified Ad vector showed higher transgene production in the liver than the conventional Ad vector. RT-PCR analysis showed that spleen, not liver, is the major site of cytokine, chemokine, and IFN expression. Splenic CD11c(+) cells were found to secret cytokines. The tissue distribution of Ad vector DNA showed that spleen distribution was much reduced in this modified Ad vector, reflecting reduced IL-6 levels in serum. Liver toxicity by the conventional Ad vector was reduced by anti-IL-6R Ab, suggesting that IL-6 signaling is involved in liver toxicity and that decreased liver toxicity of the modified Ad vector was due in part to the reduced IL-6 production. This study contributes to an understanding of the biological mechanism in innate immune host responses and liver toxicity toward systemically administered Ad vectors and will help in designing safer gene therapy methods that can reduce robust innate immunity and inflammatory responses.  相似文献   

19.
AbstractWe delivered adenovirus vector (Ad) via intravitreous injection and monitored transgene (luciferase) expression in living mice (BALB/c) at multiple time points. In vivo live imaging technology was able to assess dynamically intraocular luciferase expression in a single animal population throughout the entire experiment period. Using this information, we were able to determine the optimal time point for readministration of Ad into the eyes and to dynamically study the time course of expression of a second Ad administration. Optical imaging demonstrated the limited period of transgene expression in eyes. Significant transgene signal was also detected in livers. The repeat intraocular delivery of the adenovirus resulted in significant blunting of transgene expression in both eyes and livers compared to the initial delivery. Periocular corticosteroid (triamcinolone acetonide) injection combined with initial Ad delivery was effective to rescue luciferase expression on repeat Ad vector delivery. However, this effect was not observed when corticosteroid was combined with repeat Ad delivery. Although corticosteroid enhanced ocular transgene expression, it also increased transgene expression in liver, which has potential safety implications. This dynamic transgene expression in eyes was successfully traced and monitored via a live imaging technique.  相似文献   

20.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号