首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bulbocavernosus (BC) and levator ani (LA) muscles are present in males but absent or severely reduced in females, and the fate of these muscles controls the survival of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus. However, the mechanism underlying the sex difference in BC and LA development has been controversial. We examined the role of cell death in sexual differentiation of the bulbocavernosus BC/LA muscles in mice. Muscle development was mapped from embryonic day 16 (E16) to postnatal day 5 (P5). A sex difference (male>female) first arose on E17 (BC) or E18 (LA), and increased in magnitude postnatally. TUNEL labeling revealed dying cells in the BC and LA muscles of both sexes perinatally. However, females had a significantly higher density of TUNEL-positive cells than did males. A role for the proapoptotic factors, Bax and Bak, in BC/LA development was tested by examining mice lacking one or both of these proteins. In females lacking either Bax or Bak, the BC was absent and the LA rudimentary. Deletion of both bax and bak genes, however, rescued the BC, increased LA size approximately 20-fold relative to controls, and virtually eliminated TUNEL-positive cells in both muscles. We conclude that cell death plays an essential role in sexual differentiation of the BC/LA muscles. The presence of either Bax or Bak is sufficient for cell death in the BC/LA, whereas the absence of both prevents sexually dimorphic muscle cell death.  相似文献   

2.
Three skeletal muscles viz., gastrocnemius, pectoralis and diaphragm from rats acclimated to a low temperature (4 +/- 1 degrees C; 16 hr daily; maximum for 8 weeks) exhibit an increased myosin ATPase activity. An analysis of native myosin from these muscles under non-dissociating conditions reveals two myosin isozymes instead of a single isozyme expressed in control muscles. Isoelectric focusing (IEF) coupled with two dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2-D SDS-PAGE) confirms an increased phosphorylation of myosin light chain 2 (MLC2) in muscles from cold acclimated rats.  相似文献   

3.
Differentiation of cultured myogenic progenitor cells (satellite cells and mononucleated myoblasts) derived from hindlimb muscles of rat embryos and newborn animals was studied. Immunocytochemical methods and PCR analysis revealed expression of heavy myosin chains at the earliest stages of myogenesis (in mononucleated myoblasts). Expression of the gene encoding the embryonic form of myosin and a low level of expression of the gene encoding perinatal myosin in cultured progenitor cells derived from embryonic muscles was detected by PCR. Cells derived from muscles of newborn animals also expressed these two myosin forms, though at a lower level. The progenitor cells derived from muscles of rat embryos and newborn animals were found to express myosin 2a, which is characteristic of fast-twitch definitive muscle fibers.  相似文献   

4.
Regeneration of rat fast (gastrocnemius medialis) and slow (soleus) muscles was examined after degeneration of myofibers had been achieved by injection of cardiotoxin into the hindleg during the first week after birth. Myogenesis in the regenerating muscles was compared to postnatal myogenesis in the contralateral and in control muscles. Synthesis of embryonic and neonatal myosin isoforms was initiated 3 days after injury. These forms were gradually replaced by the intermediate and fast adult isoforms (type II fiber myosins), whose synthesis followed the same curve in regenerating, contralateral, and control muscles. In contrast, synthesis of the slow myosin isoform (type I fiber myosin) was greatly delayed in injured muscles, but eventually became equal to its synthesis in contralateral and control muscles. It therefore appears that synthesis of type II fiber myosins is similarly regulated, probably by thyroid hormone, in developing regenerating and normal muscles, while synthesis of type I fiber myosin depends on other factor(s).  相似文献   

5.
It was shown that the temperature sensitivity of shortening velocity of skeletal muscles is higher at temperatures below physiological (10-25 degrees C) than at temperatures closer to physiological (25-35 degrees C) and is higher in slow than fast muscles. However, because intact muscles invariably express several myosin isoforms, they are not the ideal model to compare the temperature sensitivity of slow and fast myosin isoforms. Moreover, temperature sensitivity of intact muscles and single muscle fibers cannot be unequivocally attributed to a modulation of myosin function itself, as in such specimen myosin works in the structure of the sarcomere together with other myofibrillar proteins. We have used an in vitro motility assay approach in which the impact of temperature on velocity can be studied at a molecular level, as in such assays acto-myosin interaction occurs in the absence of sarcomere structure and of the other myofibrillar proteins. Moreover, the temperature modulation of velocity could be studied in pure myosin isoforms (rat type 1, 2A, and 2B and rabbit type 1 and 2X) that could be extracted from single fibers and in a wide range of temperatures (10-35 degrees C) because isolated myosin is stable up to physiological temperature. The data show that, at the molecular level, the temperature sensitivity is higher at lower (10-25 degrees C) than at higher (25-35 degrees C) temperatures, consistent with experiments on isolated muscles. However, slow myosin isoforms did not show a higher temperature sensitivity than fast isoforms, contrary to what was observed in intact slow and fast muscles.  相似文献   

6.
The influence of diabetes mellitus, streptozotocin-induced diabetes and ageing on the non-enzymatic glycosylation of myosin from cardiac and skeletal muscles was investigated. In cardiac muscle, and to a lesser extent also in skeletal muscles of the rat, non-enzymatic glycosylation of myosin increases with the age, as measured in 6-, 12- and 29-month-old animals. Skeletal muscle myosin from diabetic humans and also that from diabetic rat cardiac muscle are more glycosylated when compared with control myosin preparations. Ca(2+)-ATPase activity of myosin is lower in muscles of diabetic individuals as compared with control muscles.  相似文献   

7.
1. The light-chain components of myosin from cardiac muscle (19000 and 27000 daltons) and of rabbit soleus and crureus muscles (19000, 27000 and 29000 daltons) were characterized. 2. The 19000-dalton components in carciac- and red-skeletal-muscle myosins were spontaneously modified to a component of slightly higher net negative charge. 3. The 19000-dalton component in cardiac and red skeletal muscles and their modified forms were phosphorylated by myosin light-chain kinase. 4. Evidence was obtained for the presence of myosin light-chain kinase in cardiac and red skeletal muscles. 5. Myosin light-chain kinase catalysed the phosphorylation of the whole light-chain fraction from white and red skeletal muscle at similar rates. The light-chain fraction of cardiac-muscle myosin was phosphorylated at a significantly lower rate. 6. The light-chain components of cardiac-muscle myosin and their phosphorylated froms were separated by ion-exchange chromatography and their amino acid compositions determined.  相似文献   

8.
The differentiation of distinct myotube fiber types in chick limb muscle development is coincident with innervation. The role of motoneurons in influencing fiber type differentiation was analyzed by causing chick hind limb muscles to be innervated by inappropriate motoneurons and then examining experimental muscles for changes in the distribution of myosin ATPase fiber types. Motoneuron innervation of limb muscles was altered by performing either limb shifts, limb reversals, or large spinal cord reversals on early neural tube or limb bud stage chick embryos. The distribution of fiber types was then analyzed in muscles from stage 36 (E10) to stage 45 (E20) embryos after processing hind limb sections for myosin ATPase histochemistry. In the majority of experimental muscles examined (267/312), the distribution of myosin ATPase fiber types was unaltered. In the remaining experimental muscles (14%), alterations in the distribution of myosin ATPase fiber types occurred, indicating that in some cases, foreign innervation may alter the developmental program of differentiating myotubes. The results suggest that myotubes differentiate myosin ATPase staining characteristics according to an intrinsic program and that these differentiating myotubes are selectively innervated by motoneurons of the appropriate type under most conditions including normal development. Under exceptional circumstances of motoneuron-muscle fiber type mismatch, embryonic motoneurons can alter fiber type expression.  相似文献   

9.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

10.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

11.
The isoform composition of myosin light chains and the extent of their phosphorylation in skeletal and cardiac muscles of ground squirrel Citellus undulatus in different periods of hibernation were studied. Regulatory myosin light chains of skeletal muscles of hibernating ground squirrels were completely dephosphorylated, while 25% of these light chains in active animals were phosphorylated. During hibernation, a shift of isoform composition of essential and regulatory skeletal muscle myosin light chains toward slower isoforms was observed, which is evidenced by the data obtained on m. psoas and on the totality of all skeletal muscles. In the atrial myocardium of hibernating ground squirrels, ventricular myosin light chains 1 (up to 60%) were registered. In contrast, during arousal of ground squirrels, in ventricular myocardium the appearance of atrial myosin light chains 1 (up to 30%) was revealed. A possible role of posttranslation changes in myosin light chains and their isoform shifts in the hibernation scenario is discussed.  相似文献   

12.
The local anaesthetic (Bupivacaine (1-n-butyl-DL-piperidine-2-carboxylic acid-2, 6-dimethyl anilide hydrochloride) has been used to induce myofiber damage (and thus satellite cells proliferation) and thereby represents a tool for increasing the yield of myoblasts from adult muscles. Replicating satellite cells were isolated by enzymatic dissociation from soleus (slow type) and tibialis anterior (fast type) muscles of adult rats, and categorized by the isoform (embryonic, fast and slow) of myosin heavy chain (MHC) expressed following myotube formation in a similar in vitro environment. According to light microscopic criteria, no morphological differences exist between the satellite cell cultures obtained from adult fast and slow muscles after Bupivacaine injection. On the other hand the derived myotubes express, beside the embryonic type, the peculiar myosin heavy chains which characterize the myosin pattern of the donor muscles.  相似文献   

13.
Ca2+ATPase activity and light chains of myosin, fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in developing, adult and denervated fast, slow and cardiac muscles of the rat, guinea-pig, cat, rabbit and chick were studied. It has been shown that in normal adult muscles the electrophoretic pattern of light chains of myosin reflects the myosin ATPase activity only when muscles from the same animal species are compared. In homologous muscles from adult animals differing in size, the size-dependent difference in myosin ATPase activity is not revealed in the electrophoretic pattern. Both in developing and in denervated muscle, changes in myosin ATPase activity are either connected with changes in the pattern of light chains of myosin or this pattern does not change. This relation is different in fast and slow muscles and also differs in chick and rabbit muscles. There are several possibilities of explaining the relation between ATPase activity of myosin and the pattern of light chains of myosin. The observation that myosin from the soleus muscle of 1-month-old rabbit contains light chains corresponding to both fast and slow type of myosin, indicates that the change in myosin ATPase activity during development is due to changes in the ratio between the fast and slow type of myosin.  相似文献   

14.
The regeneration of adult rat and mouse slow (soleus) and fast (sternomastoid) muscles was examined after the degeneration of myofibers had been achieved by a snake venom cardiotoxin, under experimental conditions devised to spare as far as possible the satellite cells, the nerves, and the blood vessels of the muscles. Three days after the injury, no myosin was detectable in selected portions of the muscles. New myosins of embryonic, neonatal, and adult types started to be synthesized during the following two days. Adult myosins thus appeared more precociously than in development, which implies that the synthesis of myosin isoforms during regeneration does not entirely 'recapitulate' the sequence of myosin transitions observed during normal development. Two weeks after the injury, the isomyosin electrophoretic pattern displayed by regenerated muscles was already the same as that of control muscles; the normal adult pattern was therefore expressed more rapidly in regenerating than in developing muscles. Except for the synthesis of the slow isoform which was generally inhibited in denervated muscles, the same types of myosins were expressed during the early stages of regeneration in denervated as in innervated muscles; long-term denervation prevented however the qualitative and quantitative recovery of the normal myosin pattern.  相似文献   

15.
Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.  相似文献   

16.
The temporal relationships among increases in adenosine 3',5'-cyclic monophosphate (cAMP) levels, myosin dephosphorylation, and relaxation were investigated to clarify the mechanisms of airway muscle relaxation. Canine tracheal muscles isometrically contracted (82% of maximum force) with 10(-6) M methacholine were relaxed by adding either 4 x 10(-7) M atropine or 4 x 10(-5) M forskolin. Atropine had no effect on cAMP levels; myosin phosphorylation and force, however, decayed at the same rates and these two parameters returned to their basal pre-methacholine levels within 5 min. Forskolin treatment results in about a 10-fold increase in cAMP levels; myosin phosphorylation and force decayed simultaneously to their respective steady-state levels by 10 min but neither parameter returned to its pre-methacholine level. The addition of forskolin to muscles maximally contracted with 10(-4) M methacholine leads to about a 30-fold increase in cAMP levels. However, there are minimal decreases in myosin phosphorylation and force in these muscles. Thus myosin dephosphorylation appears to be essential for airway muscle relaxation, whereas an increase in cAMP in the absence of myosin dephosphorylation is insufficient to cause relaxation. Moreover, myosin dephosphorylation appears to be a common step in the cAMP-independent and cAMP-dependent mechanisms for airway muscle relaxation.  相似文献   

17.
After axonal injury on postnatal day 14 (P14), but not P21, motoneurons in the spinal nucleus of the bulbocavernosus (SNB) do not display their normal response to circulating testosterone levels. This could result from a permanent disruption of communication between motoneurons and their testosterone-sensitive target muscles. We assessed the extent of reinnervation of one of these target muscles, the levator ani (LA) muscle, 5 months after the pudendal nerve was cut either on P14 or P21. The number of motoneurons innervating the LA in control and nerve cut animals was determined using retrograde labeling procedures. Functional recovery of the LA muscle was determined via the testing of its in situ contractile properties. Compared to control muscles, reinnervated LA muscles were smaller, had fewer muscle fibers, generated a lower maximum tetanic tension, and were more fatigable. In spite of the fact that fewer motoneurons reinnervated the LA muscle after nerve cut on P14 than on P21, there were no differences in the weight or contractile properties of the LA muscle between these two groups. These data suggest that motoneurons that survived injury on P14 innervated more muscle fibers than normal and exhibited a similar ability to functionally reinnervate the target muscle as those motoneurons that survived injury on P21.  相似文献   

18.
During development, survival of the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) and its target perineal muscles, the bulbocavernosus (BC) and the levator ani (LA) is androgen-dependent. To define androgen's site of action in masculinizing SNB system structures, we examined whether or not androgen receptors are present in SNB motoneurons and/or BC/LA muscles of neonatal male rats. Using a receptor binding assay, we have identified androgen-binding factors in the neonatal BC/LA (Bmax = 13.5 fmol/mg protein; Kd = 4.69 nM) for the first time. In contrast, androgen autoradiography provided no evidence that neonatal spinal motoneurons accumulate androgens. These results support the hypothesis that BC/LA muscles are a primary site of androgen action for masculinizing SNB system structures, and that androgen need not interact with SNB motoneurons directly to sexually differentiate them.  相似文献   

19.
Seasonal changes of the isoform composition of myosin heavy chains in skeletal muscles (m. triceps, m. longissimus dorsi, m. soleus, m. gastrocnemius, m. vastus lateralis) of hibernating ground squirrels Spermophilus undulatus were studied. Functional properties of myosin (the actin-activated ATPase activity and its Ca2+-sensitivity in vitro) were also examined. It was observed that the content of slow myosin heavy chain I isoform increased and the content of fast IIx/d isoform decreased in muscles of torpid ground squirrels and animals which are active in autumn and winter. In muscles of these animals the content of N2A-titin isoform decreased although the relative content of NT-titin isoform, observed in striated muscles of mammals in our previous experimental works, increased. Actin-activated ATPase activity and Ca2+-sensitivity of myosin isolated from skeletal muscles of torpid and interbout ground squirrels were found to reduce. The changes observed are discussed in the context of adaptation of skeletal muscles of ground squirrels to hibernation conditions.  相似文献   

20.
Changes in the myosin phenotype of differentiated muscle are a prominent feature of the adaptation of the tissue to a variety of physiological stimuli. In the present study the molecular basis of changes in the proportion of myosin isoenzymes in rat skeletal muscle which occur during compensatory hypertrophy caused by the combined removal of synergist muscles and spontaneous running exercise was investigated. The relative amounts of sarcomeric myosin heavy (MHC)- and light (MLC)-chain mRNAs in the plantaris (fast) and soleus (slow) muscles from rats was assessed with cDNA probes specific for different MHC and MLC genes. Changes in the proportion of specific MHC mRNA levels were in the same direction as, and of similar magnitude to, changes in the proportion of myosin isoenzymes encoded for by the mRNAs. No significant changes in the proportion of MLC proteins or mRNA were detected. However, high levels of MLC3 mRNA were measured in both normal and hypertrophied soleus muscles which contained only trace amounts of MLC3 protein. Small amounts of embryonic and neonatal MHC mRNAs were induced in both muscles during hypertrophy. We conclude that the change in the pattern of myosin isoenzymes during skeletal-muscle adaptation to work overload is a consequence of changes in specific MHC mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号