首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trimethylamine N-oxide (TMAO) reductase was purified from an aerobic photosynthetic bacterium Roseobacter denitrificans. The enzyme was purified from cell-free extract by ammonium sulfate fractionation, DEAE ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme was composed of two identical subunits with molecular weight of 90,000, as identified by SDS-polyacrylamide gel electrophoresis, containing heme c and a molybdenum cofactor. The molecular weight of the native enzyme determined by gel filtration was 172,000. The midpoint redox potential of heme c was +200 mV at pH 7.5. Absorption maxima appeared at 418,524, and 554 nm in the reduced state and 410 nm in the oxidized state. The enzyme reduced TMAO, nicotine acid N-oxide, picoline N-oxide, hydroxylamine, and bromate, but not dimethyl sulfoxide, methionine sulfoxide, chlorate, nitrate, or thiosulfate. Cytochrome c2 served as a direct electron donor. It probably catalyzes the electron transfer from cytochrome b-c1 complex to TMAO reductase. Cytochrome c552, another soluble low-molecular-weight cytochrome of this bacterium, also donated electrons directly to TMAO reductase.  相似文献   

2.
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.  相似文献   

3.
The bacterial molybdoenzyme dimethyl sulfoxide (DMSO) reductase from Rhodobacter capsulatus catalyzes the reduction of DMSO to dimethyl sulfide in anaerobic respiration. In its native state, DMSO reductase is reduced to its active state by a pentaheme cytochrome (DorC). Alternatively, we show that DMSO reductase catalysis may be driven electrochemically using a series of homologous coordination compounds as mediating synthetic electron donors. All mediators are macrocyclic hexaaminecobalt(II) complexes in their active form, differing principally in their redox potentials over a range of about 250 mV. Thus, each complex presents a different reductive driving force to DMSO reductase and this leads to pronounced differences in the electrocatalytic behavior as measured by cyclic voltammetry. Digital simulation of the experimental voltammetry enables the critical features of the catalytic cycle to be extracted.  相似文献   

4.
Fluorescein isothiocyanate was reacted in dimethyl sulfoxide with a ten-fold excess of diaminopentane, and the mono-substituted thiourea product was isolated by DEAE-cellulose chromatography, lyophilization and acid precipitation from aqueous base. The dried product was then condensed in dry dimethyl sulfoxide with Methotrexate (MTX) activated by prior incubation (30 min) with 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide hydrochloride, and the reaction products were purified by column chromatography on DEAE-cellulose. Exhaustive elution with 1 M ammonium bicarbonate removed several by-products then finally afforded the exclusively gamma-linked fluorescein--MTX derivative. After lyophilization and acid-base precipitation the compound was obtained in good yield (greater than 40%), was homogeneous by reverse-phase HPLC epsilon 493 (0.1 N NaOH) = 66,000 and was a comparable inhibitor to MTX for rat-liver dihydrofolate reductase.  相似文献   

5.
R Cammack  J H Weiner 《Biochemistry》1990,29(36):8410-8416
The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein.  相似文献   

6.
Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine.  相似文献   

7.
The gene encoding dimethyl sulfoxide (DMSO) reductase, which contains a molybdenum cofactor, of the phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans was isolated using an oligonucleotide probe, which was synthesized based on a internal amino acid sequence of the purified enzyme. The DMSO reductase gene coded for 822 amino acids (2466 base pairs, Mr = 89,206) as a precursor form having a signal peptide of 42 amino acids. The deduced amino acid sequence had high homology with those of some enzymes containing a molybdenum cofactor: trim ethyl amine N-oxide reductase (48%), biotin sulfoxide reductase (44%), and DMSO reductase (29%) of Escherichia coli.  相似文献   

8.
A comprehensive study of the thermodynamic redox behavior of the hemes from the cbb3 oxygen reductase from Bradyrhizobium japonicum was performed. This enzyme is a member of the C-type heme-copper oxygen reductase superfamily and has three subunits with six redox centers: four low-spin hemes and a high-spin heme and one copper ion, composing the site where oxygen is reduced. In this analysis, the visible spectra and redox properties of the five heme centers were deconvoluted. Their redox profiles and the pH dependence of the midpoint reduction potentials (redox-Bohr effect) were investigated. The reference reduction potentials (defined for a state where all centers are reduced) and homotropic interaction potentials were determined in the framework of a model of pairwise interacting redox centers. At pH 7.7, the reference reduction potentials for the three hemes c are 390, 300, and 220 mV, with low interaction potentials between them, weaker than -15 mV. For hemes b and b3, reference reduction potentials of 375 and 290 mV, respectively, were obtained; these two redox centers show an interaction potential weaker than -60 mV. The midpoint reduction potentials of all five hemes are pH-dependent. The study of these thermodynamic parameters is important in understanding the coupling mechanism of the redox and chemical processes during oxygen reduction. The analysis of the thermodynamic redox behavior of the cbb3 oxygen reductase contributes to the investigation of the mechanism of electron transfer and proton translocation by heme-copper oxygen reductases in general and indicates a thermodynamic coupling for the electron and proton transfer mechanisms.  相似文献   

9.
A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).  相似文献   

10.
Resonance Raman spectroscopy has been used to define active site structures for oxidized Mo(VI) and reduced Mo(IV) forms of recombinant Rhodobacter sphaeroides biotin sulfoxide reductase expressed in Escherichia coli. On the basis of (18)O/(16)O labeling studies involving water and the alternative substrate dimethyl sulfoxide and the close correspondence to the resonance Raman spectra previously reported for dimethyl sulfoxide reductase (Garton, S. D., Hilton, J., Oku, H., Crouse, B. R., Rajagopalan, K. V., and Johnson, M. K. (1997) J. Am. Chem. Soc. 119, 12906-12916), vibrational modes associated with a terminal oxo ligand and the two molybdopterin dithiolene ligands have been assigned. The results indicate that the enzyme cycles between mono-oxo-Mo(VI) and des-oxo-Mo(IV) forms with both molybdopterin dithiolene ligands remaining coordinated in both redox states. Direct evidence for an oxygen atom transfer mechanism is provided by (18)O/(16)O labeling studies, which show that the terminal oxo group at the molybdenum center is exchangeable with water during redox cycling and originates from the substrate in substrate-oxidized samples. Biotin sulfoxide reductase is not reduced by biotin or the nonphysiological products, dimethyl sulfide and trimethylamine. However, product-induced changes in the Mo=O stretching frequency provide direct evidence for a product-associated mono-oxo-Mo(VI) catalytic intermediate. The results indicate that biotin sulfoxide reductase is thermodynamically tuned to catalyze the reductase reaction, and a detailed catalytic mechanism is proposed.  相似文献   

11.
Reduction of trimethylamine N-oxide is catalyzed by at least two enzymes inEscherichia coli: trimethylamine N-oxide reductase, which is anaerobically induced by trimethylamine N-oxide, and the constitutive enzyme dimethyl sulfoxide reductase. In this study, an increase in the specific activity of trimethylamine N-oxide reduction was observed in the anaerobic culture with dimethyl sulfoxide, but the specific activity of dimethyl sulfoxide reduction was not changed. The inducible enzyme trimethylamine N-oxide reductase was found in this culture. A marked expression of the structural genetorA for trimethylamine N-oxide reductase was also observed in atorA-lacZ gene fusion strain under anaerobic conditions with either trimethylamine N-oxide or dimethyl sulfoxide.l-Methionine sulfoxide and the N-oxides of adenosine, picolines, and nicotinamide slightly repressed expression of the gene. Membrane-boundb- andc-type cytochromes involved in the trimethylamine N-oxide reduction were also produced in a wild-type strain grown anaerobically with dimethyl sulfoxide. But thec-type cytochrome was not produced in thetorA-lacZ strain grown anaerobically with trimethylamine N-oxide or dimethyl sulfoxide; this suggests that there is a correlation between the expression oftorA and the synthesis of the cytochrome.  相似文献   

12.
Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chromatography on blue dextran-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of homogeneous nitrite reductase reveals a single subunit band of Mr = 140,000. Isoelectric focusing of dissociated enzyme followed by sodium dodecyl sulfate-gel electrophoresis in the second dimension yields a single subunit spot with an isoelectric point at pH 6.8-6.9. Two-dimensional thin layer chromatography of acid-hydrolyzed nitrite reductase treated with 5-dimethylaminoaphthalene-1-sulfonyl chloride yields a single reactive NH2-terminal corresponding to glycine. An investigation of the prosthetic groups of nitrite reductase reveals little or no flavin associated with the purified protein, although exogenously added FAD is required for activity in vitro. An iron content of 9-10 Fe eq/mol suggests the presence of nonheme iron in addition to the siroheme moieties. Amino acid analysis yields 43 cysteinyl residues and sulfhydryl reagents react with 50 thiol eq/mol of nitrite reductase. The non-cysteinyl sulfur content, determined as 8.1 acid-labile sulfide eq/mol, is presumably associated with nonheme iron to form iron-sulfur centers. We conclude that N. crassa nitrite reductase is a homodimer of large molecular weight subunits housing an electron transfer complex of FAD, iron-sulfur centers, and siroheme to mediate the reduced pyridine nucleotide-dependent reduction of nitrite to ammonia.  相似文献   

13.
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120-122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (1)H(2)O and (2)H(2)O revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH(2), Mo(V)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307, 63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E degrees = +315 mV, pH 8).  相似文献   

14.
Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome II revealed the presence of 10 putative open reading frames, of which 5 possess homology to genes encoding the TMAO reductase (the tor system) of Escherichia coli. The dorS and dorR genes encode a sensor-regulator pair of the two-component sensory transduction protein family, homologous to the torS and torR gene products. The dorC gene was shown to encode a 44-kDa DMSO-inducible c-type cytochrome. The dorB gene encodes a membrane protein of unknown function homologous to the torD gene product. The dorA gene encodes DMSO reductase, containing the molybdopterin active site. Mutations were constructed in each of these dor genes, and the resulting mutants were shown to be impaired for DMSO-dependent anaerobic growth in the dark. The mutant strains exhibited negligible levels of DMSO reductase activity compared to the wild-type strain under similar growth conditions. Further, no DorA protein was detected in DorS and DorR mutant strains with anti-DorA antisera, suggesting that the products of these genes are required for the positive regulation of dor expression in response to DMSO. This characterization of the dor gene cluster is the first evidence that genes of chromosome CII encode metabolic functions which are essential under particular growth conditions.  相似文献   

15.
Enterally administered, heme is a good source of iron in humans and other animals, but the metabolism of heme by enterocytes has not been fully characterized. Caco-2 cells in culture provide a useful model for studying cells that resemble small intestinal epithelium, both morphologically and functionally. In this paper we show that heme oxygenase, the rate-controlling enzyme of heme catabolism, is present in abundance in Caco-2 cells, and that levels of its mRNA and activity can be increased by exposure of the cells to heme or metal ions (cadmium, cobalt). Caco-2 cells also contain biliverdin reductase activity which, in the basal state, is similar to that of heme oxygenase (approximately 40 pmole of product per mg protein per minute); however, when heme oxygenase is induced, biliverdin reductase may become rate-limiting for bilirubin production.Abbreviations BVR biliverdin reductase - DMEM Dulbecco's modified Eagles medium - DMSO dimethyl sulfoxide - HO heme oxygenase - 1xSSC a solution of 0.015 M sodium citrate/0.15 sodium chloride  相似文献   

16.
Chlorate reductase has been isolated from the chlorate-respiring bacterium Ideonella dechloratans, and the genes encoding the enzyme have been sequenced. The enzyme is composed of three different subunits and contains molybdopterin, iron, probably in iron-sulfur clusters, and heme b. The genes (clr) encoding chlorate reductase are arranged as clrABDC, where clrA, clrB, and clrC encode the subunits and clrD encodes a specific chaperone. Judging from the subunit composition, cofactor content, and sequence comparisons, chlorate reductase belongs to class II of the dimethyl sulfoxide reductase family. The clr genes are preceded by a novel insertion sequence (transposase gene surrounded by inverted repeats), denoted ISIde1. Further upstream, we find the previously characterized gene for chlorite dismutase (cld), oriented in the opposite direction. Chlorate metabolism in I. dechloratans starts with the reduction of chlorate, which is followed by the decomposition of the resulting chlorite to chloride and molecular oxygen. The present work reveals that the genes encoding the enzymes catalyzing both these reactions are in close proximity.  相似文献   

17.
Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene.  相似文献   

18.
Oxidative cleavage of hematohemin IX in pyridine solution in the presence of ascorbic acid (coupled oxidation), followed by esterification of the products with boron trifluoride/methanol produced the four possible hematobiliverdin dimethyl esters in 11.1% overall yield. Transetherifications took place simultaneously with the esterification reaction and resulted in the formation of the dimethyl ester of hematobiliverdin IX gamma 8a,13a-dimethyl ether (1.8%), the dimethyl ester of hematobiliverdin IX beta 13a,18a-dimethyl ether (1.9%), the dimethyl ester of hematobiliverdin IX delta 8a-monomethyl ether (1.4%), and the dimethyl ester of hematobiliverdin IX alpha 18a-monomethyl ether (0.4%). The latter was the sole product obtained after the enzymatic oxidation of hematohemin with heme oxygenase, after esterification of the reaction product with boron trifluoride/methanol. When the esterification step was omitted hematobiliverdin IX alpha was obtained from the enzymatic oxidation. The structures of the hematobiliverdin derivatives were secured by their NMR and mass spectra data. Saponification of the dimethyl esters afforded the hematobiliverdin methyl ethers, which were excellent substrates of biliverdin reductase and were readily reduced to the corresponding bilirubins. Hematobiliverdin IX alpha was also a good substrate of biliverdin reductase. It is concluded that the enzymatic oxidation of hematohemin IX by heme oxygenase is alpha-selective, while biliverdin reductase shows no selectivity in the reduction of the four hematobiliverdin isomers.  相似文献   

19.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

20.
Cytochrome p450BM3 is a self-sufficient fatty acid monooxygenase consisting of a diflavin (FAD/FMN) reductase domain and a heme domain fused together in a single polypeptide chain. The multidomain structure makes it an ideal model system for studying the mechanism of electron transfer and for understanding p450 systems in general. Here we report the redox properties of the cytochrome p450BM3 wild-type holoenzyme, and its isolated FAD reductase and p450 heme domains, when immobilized in a didodecyldimethylammonium bromide film cast on an edge-plane graphite electrode. The holoenzyme showed cyclic voltammetric peaks originating from both the flavin reductase domain and the FeIII/FeII redox couple contained in the heme domain, with formal potentials of -0.388 and -0.250 V with respect to a saturated calomel electrode, respectively. When measured in buffer solutions containing the holoenzyme or FAD-reductase domain, the reductase response could be maintained for several hours as a result of protein reorganization and refreshing at the didodecyldimethylammonium modified surface. When measured in buffer solution alone, the cyclic voltammetric peaks from the reductase domain rapidly diminished in favour of the heme response. Electron transfer from the electrode to the heme was measured directly and at a similarly fast rate (ks' = 221 s-1) to natural biological rates. The redox potential of the FeIII/FeII couple increased when carbon monoxide was bound to the reduced heme, but when in the presence of substrate(s) no shift in potential was observed. The reduced heme rapidly catalysed the reduction of oxygen to hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号