首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since May 1979, 458 shrews (Blarina sp. and Sorex spp.) representing 20 species collected in Canada, Japan, and the United States were examined for coccidia; 110 (24%) had oocysts in their feces, including 8 of 21 (38%) B. brevicauda from Massachusetts, Ohio, Pennsylvania, and Vermont; 2 of 7 (29%) S. caecutiens from Hokkaido and Honshu; 14 of 63 (22%) S. cinereus from Colorado, New Mexico, Pennsylvania, Vermont, Manitoba, and Ontario; 3 of 7 (43%) S. fontinalis from Pennsylvania; 11 of 16 (69%) S. fumeus from Massachusetts, Minnesota, Pennsylvania, Vermont, and Ontario; 1 of 4 (25%) S. haydeni from Minnesota; 6 of 8 (75%) S. longirostris from Florida and Virginia; 1 of 2 (50%) S. ornatus from California; 5 of 12 (42%) S. pacificus from California and Oregon; 13 of 41 (32%) S. palustris from California, Colorado, and New Mexico; 1 of 2 (50%) S. tenellus from California; 11 of 105 (10%) S. trowbridgii from California, Oregon, and Washington; 10 of 48 (21%) S. unguiculatus from Hokkaido; and 24 of 112 (21%) S. vagrans from Arizona, California, Colorado, New Mexico, Oregon, and Washington. The following coccidians were identified from infected shrews: Eimeria brevicauda n. sp. from B. brevicauda; Eimeria fumeus n. sp. from S. fumeus, S. pacificus, S. unguiculatus, and S. vagrans; Eimeria inyoni n. sp. from S. tenellus; Eimeria palustris n. sp. from S. cinereus, S. fontinalis, S. fumeus, S. haydeni, S. longirostris, S. ornatus, S. pacificus, S. palustris, S. tenellus, S. trowbridgii, and S. vagrans; Eimeria vagrantis n. sp. from S. fumeus, S. trowbridgii, and S. vagrans; Isospora brevicauda n. sp. from B. brevicauda; and Isospora palustris n. sp. from S. pacificus, S. palustris, S. trowbridgii, S. unguiculatus, and S. vagrans. The world literature on coccidian parasites of shrews (16 eimerians and 3 isosporans exclusive of the 7 new species described here) is reviewed.  相似文献   

2.
The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrusexsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome oxidase I, control region, and restriction sites data, identified three major haplotype clades. The Northwest clade (NW) includes both subspecies of A. boreas and divergent minor clades in the middle Rocky Mountains, coastal, and central regions of the west and Pacific Northwest. The Southwest (SW) clade includes A. exsul, A. nelsoni, and minor clades in southern California. Anaxyrus canorus, previously identified as paraphyletic, has populations in both the NW and SW major clades. The Eastern major clade (E) includes three divergent lineages from southern Utah, the southern Rocky Mountains, and north of the Great Basin at the border of Utah and Nevada. These results identify new genetic variation in the eastern portion of the toad's range and are consistent with previous regional studies from the west coast. Low levels of control region sequence divergence between major clades (2.2-4.7% uncorrected pair-wise distances) are consistent with Pleistocene divergence and suggest that the phylogeographic history of the group was heavily influenced by dynamic Pleistocene glacial and climatic changes, and especially pluvial changes, in western North America. Results reported here may impact conservation plans in that the current taxonomy does not reflect the diversity in the group.  相似文献   

3.
Climatic oscillations during the Pleistocene epoch had a dramatic impact on the distribution of biota in the northern hemisphere. In order to trace glacial refugia and postglacial colonization routes on a global scale, we studied mitochondrial DNA sequence variation in a freshwater fish (burbot, Lota lota; Teleostei, Gadidae) with a circumpolar distribution. The subdivision of burbot in the subspecies Lota lota lota (Eurasia and Alaska) and Lota lota maculosa (North America, south of the Great Slave Lake) was reflected in two distinct mitochondrial lineages (average genetic distance is 2.08%). The lota form was characterized by 30 closely related haplotypes and a large part of its range (from Central Europe to Beringia) was characterized by two widespread ancestral haplotypes, implying that transcontinental exchange/migration was possible for cold-adapted freshwater taxa in recent evolutionary time. However, the derived mitochondrial variants observed in peripheral populations point to a recent separation from the core group and postglacial recolonization from distinct refugia. Beringia served as refuge from where L. l. lota dispersed southward into North America after the last glacial maximum. Genetic variation in the maculosa form consisted of three mitochondrial clades, which were linked to at least three southern refugia in North America. Two mitochondrial clades east of the Continental Divide (Mississippian and Missourian clades) had a distinct geographical distribution in the southern refuge zones but intergraded in the previously glaciated area. The third clade (Pacific) was exclusively found west of the Continental Divide.  相似文献   

4.
We examined cytochrome b sequence variation in 251 ornate shrews (Sorex ornatus) from 20 localities distributed throughout their geographical range. Additionally, vagrant (S. vagrans) and montane (S. monticolus) shrews from four localities were used as outgroups. We found 24 haplotypes in ornate shrews from California (USA) and Baja California (Mexico) that differed by 1-31 substitutions in 392 bp of mitochondrial DNA (mtDNA) sequence. In a subset of individuals, we sequenced 699 bp of cytochrome b to better resolve the phylogeographic relationships of populations. The ornate shrew is phylogeographically structured into three haplotype clades representing southern, central and northern localities. Analysis of allozyme variation reveals a similar pattern of variation. Several other small California vertebrates have a similar tripartite pattern of genetic subdivision. We suggest that topographic barriers and expansion and contraction of wetland habitats in the central valley during Pleistocene glacial cycles account for these patterns of genetic variation. Remarkably, the northern ornate shrew clade is phylogenetically clustered with another species of shrew suggesting that it may be a unique lowland form of the vagrant shrew that evolved in parallel to their southern California counterparts.  相似文献   

5.
A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.  相似文献   

6.
Complete ND2 and partial ND4 and cytochrome b mitochondrial DNA (mtDNA) sequences were analysed to evaluate the phylogeographic patterns of common garter snakes (Thamnophis sirtalis) in western North America. This species is widely distributed throughout North America, and exhibits extensive phenotypic variation in the westernmost part of its range. The overall phylogeographic pattern based on mtDNA sequences is concordant with results from studies of other species in this region, implicating historical vicariant processes during the Pleistocene and indicating bottleneck effects of recent dispersal into postglacial habitat. Indeed, the topology is statistically consistent with the hypothesis of both southern (Great Basin and California) and northern (Haida Gwaii) refugia. Specifically, we identified genetic breaks among three major clades: Northwest Coastal populations, Intermountain populations, and all California populations. The California clade contained the only other well-supported branching patterns detected; relationships among populations within the two northern clades were indistinguishable. These molecular splits contrast sharply with all prior geographical analyses of phenotypic variation in T. sirtalis in this region. Our results suggest that the extensive phenotypic variation in western T. sirtalis has been shaped more by local evolutionary forces than by shared common ancestry. Consequently, we consider all morphologically based subspecies designations of T. sirtalis in this region invalid because they do not reflect reciprocal monophyly of the mtDNA sequences.  相似文献   

7.
Amanita muscaria sensu lato has a wide geographic distribution, occurring in Europe, Asia, Africa, Australia, New Zealand, and North, Central and South America. Previous phylogenetic work by others indicates three geographic clades (i.e. 'Eurasian', 'Eurasian-alpine' and 'North American' groups) within A. muscaria. However, the historical dispersal patterns of A. muscaria remained unclear. In our project, we collected specimens from arctic, boreal and humid temperate regions in Alaska, and generated DNA sequence data from the protein-coding beta-tubulin gene and the internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA repeat. Homologous sequences from additional A. muscaria isolates were downloaded from GenBank. We conducted phylogenetic and nested clade analyses (NCA) to reveal the phylogeographic history of the species complex. Although phylogenetic analyses confirmed the existence of the three above-mentioned clades, representatives of all three groups were found to occur sympatrically in Alaska, suggesting that they represent cryptic phylogenetic species with partially overlapping geographic distributions rather than being allopatric populations. All phylogenetic species share at least two morphological varieties with other species, suggesting ancestral polymorphism in pileus and wart colour pre-dating their speciations. The ancestral population of A. muscaria likely evolved in the Siberian-Beringian region and underwent fragmentation as inferred from NCA and the coalescent analyses. The data suggest that these populations later evolved into species, expanded their range in North America and Eurasia. In addition to range expansions, populations of all three species remained in Beringia and adapted to the cooling climate.  相似文献   

8.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

9.
The identification of species via morphological characteristics has traditionally left cryptic species undescribed in taxa under selection for morphological conservation (or a lack of selection for morphological change). Treecreepers (Genus: Certhia) have a conserved morphological appearance, making it difficult to ascertain relationships in the genus based on morphology alone. Recent genetic and song structure studies of Eurasian Treecreepers identified cryptic species within Old World Certhia that were previously undescribed using morphological characteristics. Here, we use mtDNA to investigate cryptic diversity and patterns of diversification in the Brown Creeper (Certhia americana), the single described Certhia species in the Americas. Phylogenetic analyses identified six well-supported geographically-structured clades; the basal divergence separates a northern and a southern lineage in the Brown Creeper, likely cryptic species previously characterized as many subspecies. Sympatry is prevalent between clades in western North America, where possible contact zones warrant further investigation. Allopatry appears to be the primary driver of deep phylogeographic structure within the Brown Creeper; however, within clade diversity is highly correlated with the life history traits of the populations that comprise the geographically structured phylogroups.  相似文献   

10.
Shaw AJ 《Molecular ecology》2000,9(5):595-608
Nucleotide sequence variation in the ITS1-5.8S-ITS2 region of nuclear ribosomal DNA (nrDNA) from 70 populations of Mielichhoferia elongata and M. mielichhoferiana, plus two outgroup species, was analysed using maximum parsimony and maximum likelihood methods. High levels of nucleotide substitution and numerous insertion-deletion events were detected within and between the two species. M. elongata is monophyletic with regard to nrDNA variation, but M. mielichhoferiana is paraphyletic. (M. elongata is nested within it.) A clade within M. mielichhoferiana provides evidence of vicariance, with North American and Scandinavian sister groups of populations. Two major clades are resolved in M. elongata by sequence data that are completely congruent with previous isozyme work. One clade includes populations from both North America and Europe whereas the other is strictly North American. These two clades, resolved by multiple independent loci, clearly represent cryptic species within the morphologically uniform M. elongata. Certain geographical areas, most notably southwestern Colorado in Ouray and San Juan Counties, harbour diverse populations of M. elongata with distinct phylogenetic and phylogeographical histories. Morphologically indistinguishable but phylogenetically distant populations were detected a few metres apart at one site. In contrast, all populations collected over hundreds of kilometres in California belong to a single clade. Arctic North American populations belong to a clade that includes disjunct populations in Alaska, northern Ellesmere Island, and the northeastern USA, but not subarctic Swedish populations, which are more closely related to plants from the Rocky Mountains. Morphological uniformity belies complex infraspecific phylogenetic patterns within M. elongata and M. mielichhoferiana.  相似文献   

11.
A new species of microsporidium, Caudospora palustris (Microsporidia: Caudosporidae), is described from 3 species of black flies (Cnephia ornithophilia and diploid and triploid cytospecies of Stegopterna mutata), bringing to 7 the total species of caudosporids recorded from North America. This new species of caudosporid is recorded from swamp streams of the Coastal Plain from New Jersey to Georgia, with single records from the New Jersey mountains and the Upper Peninsula of Michigan. Densities of patently infected larvae (up to 10,600/m2) and spore production (nearly 8x10(11)/m2) are the greatest recorded for any microsporidium of black flies. The ultrastructure of this new species is presented, along with the first molecular characterization for a microsporidium of black flies. The phylogenetic position of black fly microsporidia within the phylum Microsporidia is presented; however, the analysis does not support the inclusion of C. palustris in any clade. Key features of all North American caudosporids are provided, and possible evolutionary trajectories are proposed based on optimization of caudosporid species on the phylogeny of their 22 known host species, including 16 that represent new host species records.  相似文献   

12.
The dynamic geological and climatic history of northwestern North America has made it a focal region for phylogeography. We conducted a range-wide phylogeographic analysis of the spotted frog complex (Rana luteiventris and Rana pretiosa) across its range in northwestern North America to understand its evolutionary history and the distribution of clades to inform conservation of R. pretiosa and Great Basin R. luteiventris, candidates for listing under the US Endangered Species Act. Mitochondrial DNA sequence data from a segment of the cytochrome b gene were obtained from 308 R. luteiventris and R. pretiosa from 96 sites. Phylogenetic analysis revealed one main R. pretiosa clade and three main R. luteiventris clades, two of which overlapped in southeastern Oregon. The three R. luteiventris clades were separated from each other by high levels of sequence divergence (average of 4.75-4.97%). Two divergent clades were also uncovered within the Great Basin. Low genetic variation in R. pretiosa and the southeastern Oregon clade of R. luteiventris suggests concern about their vulnerability to extinction.  相似文献   

13.
Since the early Miocene there have been several physical events within NW Africa that are likely to have had a major impact on its faunal diversity. Phylogeographical studies will shed new light on the biogeography of the region. We analysed mitochondrial DNA diversity in the agamid lizard Agama impalearis (also called A. bibronii) based on sequences from mitochondrial genes with very different evolutionary rates (16S rRNA and ND2). Well-supported topologies of rooted maximum parsimony trees (with a Laudakia outgroup) and unrooted haplotype networks indicated two major clades with similar branch lengths. These clades have non-overlapping distributions representing respective areas to the North and West and South and East of the Atlas mountain chain and each could be given full species recognition. Nested clade analyses indicate that historical and possible present-day allopatry account for the primary phylogeographic pattern. Further evidence is provided by the estimated timing of cladogenesis, based on calibration of evolutionary rates in the ND2 gene of another continental Agamid. Sequence divergence between clades corresponds to 8.5-9.4mya, coinciding with the main period of orogenic uplift of the Atlas. Additional evidence of cladogenesis by allopatric fragmentation is also detected within the North/West Atlas clade, although contiguous range expansion is the most predominant explanation of more recent phylogeographic effects in this species. Miocene vicariance mediated by the Atlas may provide a general explanation of intra- and interspecific biogeographical patterns in NW African species.  相似文献   

14.
Stone KD  Flynn RW  Cook JA 《Molecular ecology》2002,11(10):2049-2063
Phylogeographic patterns were used to assess intraspecific diversification of American martens (Martes americana). Within martens, two morphological groups (americana and caurina) have been recognized, though the level of distinction between them has been debated. We examined mitochondrial cytochrome b gene haplotypes from 680 martens to explore the colonization history of the Pacific Northwest and found two clades that correspond to the morphological groups. The widespread americana clade extends from interior Alaska south to Montana and eastward to Newfoundland and New England (i.e. northwestern, north-central and northeastern North America). The caurina clade occurs in western North America, minimally extending from Admiralty Island (southeastern Alaska) south to Oregon and Wyoming. Our data indicated two colonization events for the Pacific Northwest (one by members of each clade) and were consistent with the persistence of populations throughout past glacial periods in eastern and western refugia. Due to vegetational and geological history following the past deglaciation, we hypothesize that martens of the caurina clade spread along the North Pacific Coast, and into southeastern Alaska, earlier than martens of the americana clade. Mismatch distributions for the americana clade were indicative of populations that recently experienced demographic expansion, while mismatch distributions for the caurina clade suggested that populations were at equilibrium. These clades are reciprocally monophyletic and distinctive (interclade divergence ranged from 2.5 to 3.0% (uncorrected p), whereas, intraclade divergence was < 0.7%), and two regions of sympatry have been identified. Genetic signatures of past admixture in hybrid zones may have been extinguished during subsequent glacial periods when ranges contracted. This recurrent pattern of relatively restricted western, or Pacific coastal, lineages and more widespread eastern, or interior continental, lineages exists across broad taxonomic groups and suggests a shared biogeographical history.  相似文献   

15.
Although it is an uncommon distribution in seed plants, many bryophytes occur around the Pacific Rim of north‐western North America and eastern Asia. This work focuses on a clade of peatmosses (Sphagnum) that is distributed around the Pacific Rim region, with some individual species found across the total range. The goals were to infer divergent phylogenetic relationships among haploid species in the clade, assess parentage of allopolyploid taxa, and evaluate alternative hypotheses about inter‐ and intraspecific geographical range evolution. Multiple data sets and analyses resolved an ‘Alaska’ clade, distributed across western North America, eastern China and Japan, and an ‘Asia’ clade that includes western Chinese, Thai, Korean, eastern Chinese and Japanese lineages. Allopolyploids have arisen at least four times in the Pacific Rim clade of Sphagnum subgen. Subsecunda; it appears that all allopolyploid origins involved closely related haploid parental taxa. Biogeographical inferences were impacted by topological uncertainty and especially by the biogeographical model utilized to reconstruct ancestral areas. Most analyses converge on the conclusion that the ancestor to this clade of Pacific Rim Sphagnum species was widespread from Alaska south to eastern Asia, but a northern origin for the Alaska subclade was supported by one of the two biogeographical models we employed, under which it was robust to phylogenetic uncertainty.  相似文献   

16.
We used mitochondrial DNA and microsatellite loci to examine the phylogeographic patterns of the most broadly distributed lizard in eastern North America, the five-lined skink (Eumeces fasciatus). We infer that longitudinal phylogeographic patterns in E. fasciatus are consistent with fragmentation due to refugial and post-glacial dynamics, but that deep divergences within the species imply historical fragmentation that predates the Pleistocene. The effect of multiple refugia is implied from our nested clade analyses, including a northern refugium in Wisconsin. Analysis of population structure using nuclear microsatellite data within the species suggests the importance of glacial dynamics in shaping more recent genetic structuring within one widely distributed lineage that ranges from the Mississippi River to the Atlantic Ocean in longitude and from southern Ontario to the Gulf of Mexico in latitude. Results shed light on the historical processes that have influenced current population structure of a temperate lizard, support the striking similarity of longitudinal phylogeographic structure across many herpetofaunal species in eastern North America, and illustrate the utility of employing multiple markers in phylogeographic studies.  相似文献   

17.
We describe range-wide phylogeographic variation in gray jays (Perisoreus canadensis), a boreal Nearctic corvid that occurs today primarily in recently glaciated regions. Phylogenetic analysis of mitochondrial DNA (1041 base pairs ND2 gene; N=205, 50 localities) revealed four reciprocally monophyletic groups. One widespread clade occurs across the North American boreal zone, from Newfoundland to Alaska and southwest into Utah. Three other clades occur at lower latitudes in the montane West in Colorado, the northern Rocky Mountains, and the Pacific Northwest respectively. The geographic distribution of clades in gray jays corresponds with a general pattern that is emerging for boreal taxa, having one widespread northern clade and one or more geographically restricted southwestern clades. Population genetic analyses indicate that the larger boreal clade is genetically structured and harbors significantly more genetic diversity than those clades occurring at lower latitudes. Species distribution modeling (SDM) revealed multiple putative Pleistocene refugia including several occurring at higher latitudes. We suggest that multiple post-glacial colonization routes, some of which originate from these northern refugia, are responsible for the relatively high genetic diversity at high latitudes. Conversely, lower latitude clades show little variation, probably as a result of historical restriction to smaller geographical areas with smaller long-term population sizes. This 'upside-down' pattern of genetic diversity contrasts with the conventional view that populations of north-temperate species occupying previously glaciated habitats should possess lower levels of diversity than their southern counterparts.  相似文献   

18.
There is increasing evidence that exotic populations may rapidly differentiate from those in their native range and that differences also arise among populations within the exotic range. Using morphological and DNA‐based analyses, we document the extent of trait divergence among native North American and exotic Hawaiian populations of northern cardinal (Cardinalis cardinalis). Furthermore, using a combination of historical records and DNA‐based analyses, we evaluate the role of founder effects in producing observed trait differences. We measured and compared key morphological traits across northern cardinal populations in the native and exotic ranges to assess whether trait divergence across the Hawaiian Islands, where this species was introduced between 1929 and 1931, reflected observed variation across native phylogeographic clades in its native North America. We used and added to prior phylogenetic analyses based on a mitochondrial locus to identify the most likely native source clade(s) for the Hawaiian cardinal populations. We then used Approximate Bayesian Computation (ABC) to evaluate the role of founder effects in producing the observed differences in body size and bill morphology across native and exotic populations. We found cardinal populations on the Hawaiian Islands had morphological traits that diverged substantially across islands and overlapped the trait space of all measured native North American clades. The phylogeographic analysis identified the eastern North American clade (C. cardinalis cardinalis) as the most likely and sole native source for all the Hawaiian cardinal populations. The ABC analyses supported written accounts of the cardinal's introduction that indicate the original 300 cardinals shipped to Hawaii were simultaneously and evenly released across Hawaii, Kauai, and Oahu. Populations on each island likely experienced bottlenecks followed by expansion, with cardinals from the island of Hawaii eventually colonizing Maui unaided. Overall, our results suggest that founder effects had limited impact on morphological trait divergence of exotic cardinal populations in the Hawaiian archipelago, which instead reflect postintroduction events.  相似文献   

19.
The age and origin of the mesic coniferous forest ecosystem of the Pacific Northwest of North America have long been the subject of debate by biogeographers. Cardamine constancei, an endemic of the Rocky Mountain segment of this ecosystem, was subjected to phylogeographic analysis to test explicit hypotheses on the age of the ecosystem. We have predicted genetic homogeneity among river drainages if C. constancei and other associated species migrated into the region after glaciation, in contrast to the genetic differentiation that may have accrued if the species and its ecosystem have long survived in the relatively warm river canyons south of glaciation. We detected 19 haplotypes with divergence up to 1.5%, and they comprise 4 well-differentiated cpDNA clades. These clades are allopatric except for two haplotypes from the lower Clearwater clade that appear to have dispersed north into partial sympatry with the clade endemic to St.␣Joe River. The divergence and distribution of these clades is consistent with the existence of a complex glacial refugium with at least four compartments. The surprisingly high cpDNA diversity within this species suggests that conservation of mesic coniferous forest ecosystems in the region warrant a conservation plan that accounts for the historically imposed spatial structure of genetic diversity. We are currently testing our phylogeographic hypotheses by the comparative analyses of a suite of plants, animals and fungi.  相似文献   

20.
We present a maximum likelihood tree of 41 PgiC sequences for the monophyletic Stephanomeria, with 10 perennial and six annual species, widely distributed in western North America and exemplary of different speciation processes. The phylogenetic analysis represents the first use of PgiC sequences for Compositae. The annual species were originally delimited by biosystematic studies that provided evidence of their reproductive compatibility and chromosome structural homology. The perennial species are highly distinctive in morphology and have not been examined similarly. The PgiC tree provides more resolution than our previous ITS/ETS tree and reflects both past and ongoing hybridization and/or incomplete lineage sorting. Two major PgiC clades were resolved in Stephanomeria. One clade contains the genes from the annual species plus the perennial, insular endemic S. guadalupensis, which appears closely related to a monophyletic S. virgata. Stephanomeria exigua is not monophyletic. The second clade includes the genes from all other sampled perennial species and a monophyletic subclade of four genes from two annual species. The results are compared to previous studies, also using PgiC, of Clarkia (Onagraceae). Both molecular systematic and biosystematic approaches are essential to discern the very different courses of evolution in these two, well-studied genera of western North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号