首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The role of a Ca(2+)-induced Ca2+ release (CICR) mechanism in the generation of agonist-induced increases of intracellular free Ca2+ concentration ([Ca2+]i) was studied in bovine adrenal chromaffin cells. In single cells, repetitive stimulations with caffeine at 200-s intervals evoked reproducible spikes of [Ca2+]i. Ryanodine, an agent that interacts with the CICR channel of muscle, inhibited the caffeine-induced spikes of [Ca2+]i in a "use-dependent" way. High affinity binding sites for [3H]ryanodine (Kd 3.3 nM, Bmax 26 fmol/mg protein) were also detected in membranes from chromaffin cells, supporting the presence of a caffeine- and ryanodine-sensitive CICR channel. Pretreatment of single cells with caffeine + ryanodine to reduce the size of the caffeine-sensitive Ca2+ compartment inhibited a subsequent spike of [Ca2+]i evoked by histamine, a D-myo-inositol 1,4,5-trisphosphate-forming agonist. This demonstrates that a significant portion of the Ca2+ released by histamine comes from a caffeine- and ryanodine-sensitive pool. Ryanodine inhibited by 50% the size of [Ca2+]i spikes evoked by repetitive stimulation with histamine and did so in a use-dependent manner. These data suggest that, in addition to D-myoinositol 1,4,5-trisphosphate, activation of a caffeine- and ryanodine-sensitive CICR channel participates in the generation of histamine-induced release of intracellular Ca2+.  相似文献   

3.
The cytosolic free calcium concentration ([Ca2+]i) and exocytosis of chromaffin granules were measured simultaneously from single, intact bovine adrenal chromaffin cells using a novel technique involving fluorescent imaging of cocultured cells. Chromaffin cell [Ca2+]i was monitored with fura-2. To simultaneously follow catecholamine secretion, the cells were cocultured with fura-2-loaded NIH-3T3t cells, a cell line chosen because of their irresponsiveness to chromaffin cell secretagogues but their large Ca2+ response to ATP, which is coreleased with catecholamine from the chromaffin cells. In response to the depolarizing stimulus nicotine (a potent secretagogue), chromaffin cell [Ca2+]i increased rapidly. At the peak of the response, [Ca2+]i was evenly distributed throughout the cell. This elevation in [Ca2+]i was followed by a secretory response which originated from the entire surface of the cell. In response to the inositol 1,4,5-trisphosphate (InsP3)-mobilizing agonist angiotensin II (a weak secretagogue), three different responses were observed. Approximately 30% of chromaffin cells showed no rise in [Ca2+]i and did not secrete. About 45% of the cells responded with a large (greater than 200 nM), transient elevation in [Ca2+]i and no detectable secretory response. The rise in [Ca2+]i was nonuniform, such that peak [Ca2+]i was often recorded only in one pole of the cell. And finally, approximately 25% of cells responded with a similar Ca2+-transient to that described above, but also gave a secretory response. In these cases secretion was polarized, being confined to the pole of the cell in which the rise in [Ca2+]i was greatest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

5.
We made use of quin2 microfluorometry to determine the effects of endothelin (ET) on cytosolic free Ca2+ concentrations [Ca2+]i) in rat aortic smooth muscle cells in primary culture. In Ca2+-containing medium, ET induced a rapid and sustained elevation of [Ca2+]i. In the latter component, in particular, the elevation of [Ca2+]i was inhibited by diltiazem. In Ca2+-free medium, ET induced a rapid and transient [Ca2+]i elevation, which was not inhibited by diltiazem. When the caffeine-sensitive intracellular Ca2+ store was practically depleted by repeated treatment with caffeine in Ca2+-free media, ET did not elevate [Ca2+]i. Thus, it was suggested that ET induces [Ca2+]i elevation not only by extracellular Ca2+-dependent, mechanisms but also by releasing Ca2+ from the intracellular store, and that the ET-sensitive Ca2+ store may overlap with the caffeine-sensitive one, in cultured vascular smooth muscle cells.  相似文献   

6.
Caffeine-Sensitive Calcium Stores in Bovine Adrenal Chromaffin Cells   总被引:4,自引:2,他引:2  
Caffeine was used to study the intracellular Ca2+ pools of bovine chromaffin cells. Its effects on cytosolic Ca2+ concentration ([Ca2+]i) were examined using fura-2. Caffeine caused a transient increase in [Ca2+]i in the presence or absence of extracellular Ca2+. In the former case, the caffeine-induced [Ca2+]i increase was higher and stayed above the basal value for several minutes. In the latter case, the [Ca2+]i rise was lower and fell to the basal level within 1 min. These results suggest that caffeine increases [Ca2+]i by causing both Ca2+ influx and Ca2+ release from intracellular pools. In the absence of extracellular Ca2+, ionomycin but not caffeine caused a further increase in [Ca2+]i in cells that had been treated with caffeine. Apparently there are at least two intracellular Ca2+ pools, only one of which is sensitive to caffeine. The caffeine-induced [Ca2+]i rise became smaller when the cells were pretreated with the inositol trisphosphate-generating agonists, methacholine and bradykinin. In addition, methacholine was unable to initiate a [Ca2+]i transient after the cells had been treated with caffeine. The results indicate that the caffeine-sensitive Ca2+ pools overlap with the inositol trisphosphate-sensitive pool and that the size of the latter pool is smaller than that of the former. The caffeine-sensitive Ca2+ pools were refilled after high K+ treatment, which suggests that the caffeine-sensitive Ca2+ pools may be important in buffering the cytosolic Ca2+. The effect of caffeine on [Ca2+]i is not due to inhibition of phosphodiesterase. Our results support a Ca2+ entry model in which depletion of intracellular Ca2+ pools controls the rate of Ca2+ entry across the plasma membrane.  相似文献   

7.
The cytosolic free Ca2+ concentration ([Ca2+]in) in single cat and bovine adrenal chromaffin cells was measured to determine whether or not there was any correlation between the [Ca2+]in and the catecholamine (CA) secretion caused by muscarinic receptor stimulation. In cat chromaffin cells, methacholine (MCh), a muscarinic agonist, raised [Ca2+]in by activating both Ca2+ influx and intracellular Ca2+ mobilization with an accompanying CA secretion. In bovine cells, MCh elevated [Ca2+]in by mobilizing intracellular Ca2+ but did not cause CA secretion. The MCh-induced rise in [Ca2+]in in cat cells was much higher than that in bovine cells, but when Ca2+ influx was blocked, the rise was reduced, with a concomitant loss of secretion, to a level comparable to that in bovine cells. Intracellular Ca2+ mobilization due to muscarinic stimulation substantially increased secretion from depolarized bovine and cat cells, where a [Ca2+]in elevated above basal values was maintained by a continuous Ca2+ influx. These results show that Ca2+ released from internal stores is not effective in triggering secretion unless Ca2+ continues to enter across the plasma membrane, a conclusion suggesting that secretion depends on [Ca2+]in in a particular region of the cell.  相似文献   

8.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

9.
M Iino  T Yamazawa  Y Miyashita  M Endo    H Kasai 《The EMBO journal》1993,12(13):5287-5291
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.  相似文献   

10.
Alamethicin causes a concentration-dependent increase of [Ca2+]i in suspensions of bovine adrenal chromaffin cells loaded with fura-2. The basal levels of Cai2+ (234 +/- 37 nM; n = 4) increased to a maximum of 2347 +/- 791 nM (n = 3) with 100 micrograms/ml alamethicin. In the presence of 1 mM Cae2+ the increase reached a plateau within about 2-5 s. This increase was due to Ca2+ entry into chromaffin cells, since in the absence of Cae2+ alamethicin did not modify [Ca2+]i. This contrasts with ionomycin (1 microM) which produced a Cai2+ transient even in the absence of Cae2+. Mn2+ ions also entered chromaffin cells in the presence of alamethicin, as measured by the quenching of fura-2 fluorescence following excitation at 360 nm. Resting chromaffin cells had a measurable permeability to Mn2+ which was drastically increased by cell depolarization by K+ (50 mM) addition. This suggests that Mn2+ is able to permeate voltage-dependent Ca2+ channels. Ni2+ uptake into either resting or K(+)-stimulated chromaffin cells was undetectable, but addition of alamethicin induced rapid uptake of this cation. The alamethicin-induced entry of Ni2+ was decreased by 50 mM K+. Overall, the results are compatible with the formation by alamethicin of ion channels in chromaffin cell plasma membranes.  相似文献   

11.
Effects of interleukin (IL) on intracellular free Ca2+ concentration ([Ca2+]i) rise and catecholamine (CA) release were examined in isolated, cultured bovine adrenal chromaffin cells. IL-1alpha and IL-1beta inhibited the rise of [Ca2+]i and CA release induced by acetylcholine (ACh) and excess KCl both in normal and in Ca2+-sucrose medium. Pretreatment by IL-1 receptor antagonist (IL-1RA) blocked the inhibitory actions of IL-1alpha. IL-1alpha reduced CA release induced by veratridine in normal medium but not in the presence of diltiazem. Analysis using specific blockers for voltage-operated Ca2+ channels (VOCC) revealed that IL-1alpha and IL-1beta specifically inhibited the P/Q-type Ca2+ channel to reduce [Ca2+]i rise induced by excess KCl. IL-1 did not affect [Ca2+]i rise induced either by bradykinin or caffeine in Ca2+-deprived medium or via activation of store-operated Ca2+ channel (SOC). The inhibitory effects of IL-1alpha were blocked by pretreatments with herbimycin A, U0126 and PD 98054, but not with SB202190, SP 600125 or pertussis toxin (PTX). These results demonstrated that IL-1 inhibits stimulation-evoked [Ca2+]i rise and CA release in chromaffin cells by blocking voltage-operated P/O-type Ca2+ channels. The inhibitory action of IL-1 may be mediated through the tyrosine kinase and MEK/ERK pathways.  相似文献   

12.
The effects of nitrogen monoxide (NO)-related compounds on cytosolic free Ca2+ concentrations ([Ca2+]i) and noradrenaline (NA) release in neurosecretory PC12 cells were investigated. The addition of S-nitroso-cysteine (SNC) stimulated [Ca2+]i increases from an intracellular Ca2+ pool continuously in a concentration-dependent manner. Other NO donors, which stimulate cyclic GMP accumulation, did not cause [Ca2+]i increases. After treatment with 0.2 mM SNC, transient increases in [Ca2+]i from the Ca2+ pool induced by caffeine were completely abolished. The addition of N-ethylmaleimide (NEM) caused sustained [Ca2+]i increases from the intracellular Ca2+ pool. Furthermore, caffeine did not stimulate further [Ca2+]i increases in PC12 cells pretreated with NEM. These findings suggest that SNC and NEM predominantly interact with a caffeine-sensitive Ca2+ pool. The addition of dithiothreitol (DTT) to 0.4 mM SNC-stimulated cells reduced [Ca2+]i to basal levels, and the addition of DTT to NEM-stimulated cells locked [Ca2+]i at high levels. The stimulatory effects of SNC but not NEM were not abolished by pretreatment with DTT. These findings suggest that modification of the oxidation status of the sulfhydryl groups on the caffeine-sensitive receptors by SNC or NEM regulates Ca2+ channel activity in a reversible manner. SNC did not stimulate NA release by itself but did inhibit ionomycin-stimulated NA release. In contrast, NEM stimulated NA release in the absence of extracellular CaCl2 and further enhanced ionomycin-stimulated NA release. Ca2+ mobilization by SNC from the caffeine-sensitive pool was not a sufficient factor, and other factors stimulating NA release may be negatively regulated by SNC.  相似文献   

13.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

14.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

15.
N Sato  X Wang  M A Greer 《Cell calcium》1992,13(3):173-182
With 1.5 mM [Ca2+]e, 10 nM TRH induced a prompt high-amplitude burst of hormone secretion and an initial high-amplitude [Ca2+]i burst (first phase) followed by a sustained low-amplitude [Ca2+]i increment (second phase) in both tumor-derived GH4C1 and normal adenohypophyseal (AP) cells. With less than 2 microM [Ca2+]e, in both cell types the TRH-induced first phase rise in [Ca2+]i was suppressed 30% while the second phase rise was completely abolished; however, hormone secretion was inhibited only 20-30% in GH4C1 but greater than 80% in AP cells. Thapsigargin induced a first-phase rise in [Ca2+]i in AP cells equal to that induced by 10 nM TRH but only 20% as much first-phase hormone secretion. Blocking Ca2+ channels with nifedipine inhibited TRH-induced secretion in AP cells significantly more than in GH4C1 cells. Our data indicate that the TRH-induced first-phase spike in [Ca2+]i from intracellular Ca2+ stores may play a major transduction role in hormone secretion in GH4C1 cells but not in normal AP cells. Transduction mechanisms coupled to Ca2+ influx through Ca2+ channels in the plasmalemma are apparently a much more important component of TRH-induced secretion in normal than in tumor-derived pituitary cells.  相似文献   

16.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

17.
We report here that exposing cultured chromaffin cells to a low ionic strength medium (with sucrose in place of NaCl to maintain osmolarity) can induce a marked elevation in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine (CA) release. To determine the underlying mechanism, we first studied the effects of low [Na+]o on single cell [Ca2+]i (using fluo-3 as Ca2+ indicator) and CA release from many cells. In a Mg2+ and Ca2+-deficient medium, lowering the external concentration of Na2+ ([Na+]o) evoked CA secretion preceded by a transitory [Ca2+]i rise, the amplitude of which was inversely related to [Na+]o. By contrast, in the presence of either [Ca2+]o (2 mM) and [Mg2+]o (1.4 mM) or [Mg2+]o alone (3.4 mM), lowering the ionic strength was without effect. Furthermore, in a physiologic [Na+]o, [Ca2+]o and [Mg2+]o medium, two or three consecutive applications of the cholinergic agonist oxotremorine-M (oxo-M) consistently evoked a substantial [Ca2+]i rise. By contrast, consecutive applications of oxo-M in a Ca2+-deficient medium failed to evoke a rise in [Ca2+]i after the first exposure to the agonist. To clarify the underlying mechanism, we measured and compared the effects of low [Na+]o and the cholinergic agonists nicotine and oxo-M on changes in [Ca2+]i; we studied the effects of these agonists on both membrane potential, Vm (under current clamp conditions), and [Ca2+]i by single cell microfluorimetry (indo-1 as Ca2+ indicator). We observed that, in the presence of [Ca2+]o and [Mg2+]o, lowering [Na+]o had no effect on Vm. In a Ca2+-deficient medium, lowering [Na+]o depolarized the membrane from ca. –60 to –10 mV. As expected, we found that nicotine (10 M) depolarized the membrane (from ca. –60 to –20 mV) and simultaneously evoked a substantial [Ca2+]i rise that was [Ca2+]o-dependent. However, contrary to our expectations, we found that the muscarinic agonist oxo-M (50 M) also depolarized the membrane and induced an elevation in [Ca2+]i. Furthermore, both signals were blocked by D-tubocurarine, insinuating the nicotinic character of oxo-M in adrenal chromaffin cells from bovine. These results suggest that both nicotine and oxo-M stimulate Ca2+ entry, probably through voltage-gated Ca2+-channels. We also show here that oxo-M (and not low [Na+]o) stimulates phosphoinositide turnover.  相似文献   

18.
D D Friel  R W Tsien 《Neuron》1992,8(6):1109-1125
Sympathetic neurons display robust [Ca2+]i oscillations in response to caffeine and mild depolarization. Oscillations occur at constant membrane potential, ruling out voltage-dependent changes in plasma membrane conductance. They are terminated by ryanodine, implicating Ca(2+)-induced Ca2+ release. Ca2+ entry is necessary for sustained oscillatory activity, but its importance varies within the oscillatory cycle: the slow interspike rise in [Ca2+]i requires Ca2+ entry, but the rapid upstroke does not, indicating that it reflects internal Ca2+ release. Sudden alterations in [Ca2+]o, [K+]o, or [caffeine]o produce immediate changes in d[Ca2+]i/dt and provide information about the relative rates of surface membrane Ca2+ transport as well as uptake and release by internal stores. Based on our results, [Ca2+]i oscillations can be explained in terms of coordinated changes in Ca2+ fluxes across surface and store membranes.  相似文献   

19.
Changes in cytosolic free Ca2+ concentration [( Ca2+]i) due to Ca2+ entry or Ca2+ release from internal stores were spatially resolved by digital imaging with the Ca2+ indicator fura-2 in frog sympathetic neurons. Electrical stimulation evoked a rise in [Ca2+]i spreading radially from the periphery to the center of the soma. Elevated [K+]o also increased [Ca2+]i, but only in the presence of external Ca2+, indicating that Ca2+ influx through Ca2+ channels is the primary event in the depolarization response. Ca2+ release or uptake from caffeine-sensitive internal stores was able to amplify or attenuate the effects of Ca2+ influx, to generate continued oscillations in [Ca2+]i, and to persistently elevate [Ca2+]i above basal levels after the stores had been Ca2(+)-loaded.  相似文献   

20.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号