首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells.  相似文献   

2.
Shareef MM  Badugu R  Kellum R 《Genetica》2003,117(2-3):127-134
We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylated isoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.  相似文献   

3.
4.
Considerable evidence connects heterochromatin or silenced chromatin with the Origin Recognition Complex (ORC) which is needed for initiation of DNA replication. In this review we consider biological forces that might be served by this connection. The prevailing view in the literature is that ORC recruits heterochromatin. This seems paradoxical because a replication initiator, ORC, would be recruiting factors which seem to oppose replication by forming inaccessible chromatin structures. Here we suggest a different view, that heterochromatin recruits ORC to facilitate replication of hard-to-replicate heterochromatic regions. We consider how existing data can be reconciled with this viewpoint, and we consider the biological predictions that arise from this perspective  相似文献   

5.
Considerable evidence connects heterochromatin or silenced chromatin with the Origin Recognition Complex (ORC) which is needed for initiation of DNA replication.1-7 In this review we consider biological forces that might be served by this connection. The prevailing view in the literature is that ORC recruits heterochromatin. This seems paradoxical because a replication initiator, ORC, would be recruiting factors which seem to oppose replication by forming inaccessible chromatin structures. Here we suggest a different view, that heterochromatin recruits ORC to facilitate replication of hard-to-replicate heterochromatic regions. We consider how existing data can be reconciled with this viewpoint, and we consider the biological predictions that arise from this perspective.  相似文献   

6.
7.
Badugu R  Yoo Y  Singh PB  Kellum R 《Chromosoma》2005,113(7):370-384
Heterochromatin Protein 1 (HP1) is a conserved component of the highly compact chromatin found at centromeres and telomeres. A conserved feature of the protein is multiple phosphorylation. Hyper-phosphorylation of HP1 accompanies the assembly of cytologically distinct heterochromatin during early embryogenesis. Hypo-phosphorylated HP1 is associated with the DNA-binding activities of the origin recognition complex (ORC) and an HMG-like HP1/ORC-Associated Protein (HOAP). Perturbations in HP1 localization in pericentric and telomeric heterochromatin in mutants for Drosophila ORC2 and HOAP, respectively, indicate roles for these HP1 phosphoisoforms in heterochromatin assembly also. To elucidate the roles of hypo- and hyper-phosphophorylated HP1 in heterochromatin assembly, we have mutated consensus Protein Kinase-A phosphorylation sites in the HP1 hinge domain and examined the mutant proteins for distinct in vitro and in vivo activities. Mutations designed to mimic hyper-phosphorylation render the protein incapable of binding HOAP and the DmORC1 subunit but confer enhanced homo-dimerization and lysine 9-methylated histone H3-binding to the protein. Mutations rendering the protein unphosphorylatable, by contrast, do not affect homo-dimerization or binding to lysine 9-di-methylated histone H3, HOAP, or DmORC1 but do confer novel DmORC2-binding activity to the protein. This mutant protein is ectopically localized throughout the chromosomes when overexpressed in vivo in the presence of a full dose of DmORC2. This ectopic targeting is accompanied by ectopic targeting of lysine 9 tri-methylated histone H3. The distinct activities of these mutant proteins could reflect distinct roles for HP1 phosphoisoforms in heterochromatin structure and function.  相似文献   

8.
Origin recognition complex (ORC) proteins were first discovered as a six-subunit assemblage in budding yeast that promotes the initiation of DNA replication. Orc1-5 appear to be present in all eukaryotes, and include both AAA+ and winged-helix motifs. A sixth protein, Orc6, shows no structural similarity to the other ORC proteins, and is poorly conserved between budding yeast and most other eukaryotic species. The replication factor Cdc6 has extensive sequence similarity with Orc1 and phylogenetic analysis suggests the genes that encode them may be paralogs. ORC proteins have also been found in the archaea, and the bacterial DnaA replication protein has ORC-like functional domains. In budding yeast, Orc1-6 are bound to origins of DNA replication throughout the cell cycle. Following association with Cdc6 in G1 phase, the sequential hydrolysis of Cdc6 - then ORC-bound ATP loads the Mcm2-7 helicase complex onto DNA. Localization of ORC subunits to the kinetochore and centrosome during mitosis and to the cleavage furrow during cytokinesis has been observed in metazoan cells and, along with phenotypes observed following knockdown with short interfering RNAs, point to additional roles at these cell-cycle stages. In addition, ORC proteins function in epigenetic gene silencing through interactions with heterochromatin factors such as Sir1 in budding yeast and HP1 in higher eukaryotes. Current avenues of research have identified roles for ORC proteins in the development of neuronal and muscle tissue, and are probing their relationship to genome integrity.  相似文献   

9.
Over the last decade, data have accumulated that support a role for chromatin structure in regulating the initiation of DNA replication and its timing during S-phase.(1-3) However, the mechanisms underlying how chromatin structure influences replication initiation are not always understood. For example, in Drosophila histone acetylation at the ACE3 and Ori-Ã?² sequences near one of the amplified chorion loci is correlated with ORC (origin recognition complex) binding and re-replication of this locus.(4, 5) Whether histone acetylation promotes ORC binding or some later step in replication is not known. In yeast, hypo-acetylated heterochromatin and telomeric regions replicate late in S-phase(6, 7) but the mechanisms that restrict the initiation of replication at these loci are not fully understood. Nonetheless, it seems likely that histone acetylation and other types of histone modification will significantly impact DNA replication. A recent study published in Molecular Cell(8) reveals a role for the conserved NAD+-dependent histone deacetylase, Sir2(9-13), in inhibiting the assembly of the multiprotein complex necessary for the selection and activation of yeast replication origins. Here, we highlight key conclusions from this study, place them in perspective with earlier work, and outline important future questions.  相似文献   

10.
The locations of the origin recognition complex (ORC) in mammalian genomes have been elusive. We have therefore analyzed the DNA sequences associated with human ORC via in vivo cross-linking and chromatin immunoprecipitation. Antibodies specific for hOrc2 protein precipitate chromatin fragments that also contain other ORC proteins, suggesting that the proteins form multisubunit complexes on chromatin in vivo. A binding region for ORC was identified at the CpG island upstream of the human TOP1 gene. Nascent strand abundance assays show that the ORC binding region coincides with an origin of bidirectional replication. The TOP1 gene includes two well characterized matrix attachment regions. The matrix attachment region elements analyzed contain no ORC and constitute no sites for replication initiation. In initial attempts to use the chromatin immunoprecipitation technique for the identification of additional ORC sites in the human genome, we isolated a sequence close to another actively transcribed gene (TOM1) and an alphoid satellite sequence that underlies centromeric heterochromatin. Nascent strand abundance assays gave no indication that the heterochromatin sequence serves as a replication initiation site, suggesting that an ORC on this site may perform functions other than replication initiation.  相似文献   

11.
12.
13.
The origin-recognition complex (ORC) has an essential role in defining DNA replication origins and in chromosome segregation. Recent studies in Drosophila orc2 mutants, and in human cells depleted of ORC2, have suggested that this factor is also implicated in mitotic chromosome assembly. We asked whether ORC was required for M phase chromosome assembly independently of its function in DNA replication. We performed depletion assays and reconstitution experiments in Xenopus egg extracts, in conditions of M phase chromosome assembly coupled or uncoupled from DNA replication. We show that, although ORC is dispensable for mitotic chromosome condensation, it is necessary at the interphase-mitosis transition for proper mitotic chromosome assembly to occur in a reaction not strictly dependent on DNA replication. This function involves the recruitment to chromatin of cdc2 kinase and the chromatin disassembly of interphasic replication protein A (RPA) foci. Furthermore, we show that mutations of RPA at the cdc2 kinase site prevents RPA dissociation from chromatin and impairs mitotic chromosome assembly without affecting DNA replication. Our results support the conclusion that in addition to its role in the assembly of prereplication complexes (pre-RCs), at the G1-S transition, ORC is also required for their disassembly at mitotic entry.  相似文献   

14.
15.
16.
17.
ORC (origin recognition complex) serves as the initiator for the assembly of the pre-RC (pre-replication complex) and the subsequent DNA replication. Together with many of its non-replication functions, ORC is a pivotal regulator of various cellular processes. Notably, a number of reports connect ORC to numerous human diseases, including MGS (Meier–Gorlin syndrome), EBV (Epstein–Barr virus)-infected diseases, American trypanosomiasis and African trypanosomiasis. However, much of the underlying molecular mechanism remains unclear. In those genetic diseases, mutations in ORC alter its function and lead to the dysregulated phenotypes; whereas in some pathogen-induced symptoms, host ORC and archaeal-like ORC are exploited by these organisms to maintain their own genomes. In this review, I provide detailed examples of ORC-related human diseases, and summarize the current findings on how ORC is involved and/or dysregulated. I further discuss how these discoveries can be generalized as model systems, which can then be applied to elucidating other related diseases and revealing potential targets for developing effective therapies.  相似文献   

18.
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.  相似文献   

19.
20.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号