首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last 20 years, many formulations of Bacillus thuringiensis subsp. israelensis (Bti) have been commercialized for the biological control of black flies in abatement programs. However, products were tested in different streams and under different environmental conditions, thus rendering the evaluation of the performance of liquid formulations of Bti very arbitrary or even impossible. Using a new field procedure, two commercial liquid formulations of Bti, Teknar HP-D and Vectobac 1200L, were for the first time tested within short time intervals in the same stream and under environmental conditions that allowed better comparison of the behavior and the performance (carry) of both products. Field results from tests using the products tested in either the same (replicate) or different environmental (abiotic) conditions were analyzed and compared. Results of the 3-year experiment showed that both water temperature and discharge had an important effect on the performance of both products (Teknar HP-D and Vectobac 1200L). In temperate water temperature (16°C) and similar discharge (70 l s -1 ), Teknar HP-D and Vectobac 1200L did not show a significant difference in their carry50 (distance where 50% of black fly larvae mortality is recorded). However, an increase in water temperature (20- 22°C) or in the discharge (250-350 l s -1 ) enhanced significantly the carry50 of both products with Vectobac 1200L having a longer carry than Teknar HP-D. Other abiotic elements such as the hyporheic zone and adsorption onto periphyton were also identified as factors affecting the behavior and the carry of the products. However, more work should be done on the loss of the residual dosages along the stream to better understand the relation between the dosages and the resulting field mortality that would lead to suggestions on how to improve Bti formulations.  相似文献   

2.
Recently, results of a 3-year study showed the importance of abiotic factors such as water temperature, stream discharge and the hyporheic zone on the behaviour, performance and loss of the residual dosages (amount of the injected dosage left at each station) of two commercial liquid formulations of Bacillus thuringiensis subsp. israelensis ( Bti ), Teknar HP-D and Vectobac 1200L. Experiments were performed in the same stream and under environmental conditions that allowed comparisons of results between formulations. To improve our understanding of the influence of abiotic factors on the behaviour and the performance of these formulations, a 2-year experiment using the same products was conducted in another river characterized by a much different profile, higher discharges and colder temperatures. A field procedure based on a system of gutters located on the bank of the river already used in the previous 3-year experiment was utilized. Black fly larval mortalities were recorded along the river at different distances (stations) to evaluate the behaviour and the performance of the products while water samples taken at the stations were tested in the laboratory against mosquito neonate larvae to evaluate the residual dosages of Bti at each station. Results showed that higher residual dosages of the Vectobac 1200L were recovered compared to Teknar HP-D along the river. Although higher dosages were recovered, higher mortality was observed only for the Vectobac 1200 L in high discharge conditions. As seen before, the hyporheic zone (interstitial water between the streambed and groundwater) produced a major loss of the dosages in the first meters of the river. But because of the river profile, the hyporheic zone had a lesser effect on the loss of the dosages further in the river resulting in very long carries for both Teknar HP-D and Vectobac 1200L.  相似文献   

3.
Over the last two decades, many tests have been performed in the field to investigate the behaviour (persistence, carry, loss of activity, etc.) of different Bacillus thuringiensis subsp. israelensis ( Bti ) formulations. Depending on the experimental protocols, a single container of a formulation could be used more than once over time and field samples containing Bti may have to be frozen to preserve them for bioassays to be performed later. Thus, it is necessary to know how long a formulation could keep its level of efficacy and also the effects of time on frozen samples. Our results showed that the efficacy of two commercial liquid formulations of Bti (Teknar HP-D and Vectobac 1200L) when tested against Aedes triseriatus behaved differently over time when kept at room temperature. Teknar HP-D remained stable for the first two years and its LC 50 increased by 20% the third year. For Vectobac 1200L, although its larvicidal activity was better than that of Teknar HP-D every year, there was an increase in LC 50 by 22% the second year and by another 20% the third year for a total loss of activity of 46% over the three-year study. The efficacy of suspensions made with both formulations was greatly affected by freezing and the loss of efficacy increased over time. About half of the efficacy of Teknar HP-D was lost after one week of freezing and stayed at that level for three months, while with Vectobac 1200L, no significant effect of freezing was seen after one month, when compared to fresh material. However, both products showed similar efficacy after three or six months of freezing. Overall, the LC 50 s of both products had increased by a factor of about 2.5 after six months of freezing.  相似文献   

4.
The efficacy of three commercial formulations of Bacillus thuringiensis var. israelensis against two European black fly species was determined. The effect of seston concentration, temperature and larval size on the efficacy of the formulations was also determined. Teknar‐WDC was found to be almost four times as effective as Bactimos‐WP though only slightly more efficient than Vectobac‐AS against Simulium variegatum gp. larvae. Small larvae ( < 2.5 mm) were more susceptible to both Teknar‐WDC and Vectobac‐AS than large larvae ( > 5 mm) though no difference was seen with Bactimos‐WP. High seston concentrations both before and during bioassays significantly decreased the efficacy of all formulations. Increased temperatures increased the efficacy of all formulations.  相似文献   

5.
Water was collected from a site on the Susquehanna River in eastern Pennsylvania, where less-than-optimal black fly larval mortality had been occasionally observed after treatment with Bacillus thuringiensis subsp. israelensis de Barjac insecticidal crystalline proteins (Bti ICPs). A series of experiments was conducted with Simulium vittatum Zetterstedt larvae to determine the water related factors responsible for the impaired response to Bti ICPs (Vectobac 12S, strain AM 65-52). Seston in the water impaired the effectiveness of the ICPs, whereas the dissolved substances had no impact on larval mortality. Individual components of the seston then were exposed to the larvae followed by exposure to Bti ICPs. Exposure of larvae to selected minerals and nutritive organic material before ICP exposure resulted in no significant decrease in mortality. Exposure of larvae to silicon dioxide, cellulose, viable diatoms, and purified diatom frustules before Bti ICP exposure resulted in significant reductions in mortality. Exposure of larvae to purified diatom frustules from Cyclotella meneghiniana Kützing resulted in the most severe impairment of mortality after Bti ICP exposure. It is postulated that frustule-induced impairment of feeding behavior is responsible for the impairment of larval mortality.  相似文献   

6.
1. A method for quantifying interstitial water velocity based on the dissolution rate of plaster of Paris standards was developed as part of a study of vertical, longitudinal (1–4 order sites) and seasonal variation in the biotic and physical characteristics of the shallow hyporheic zone (0–30 cm) of a headwater stream system in West Virginia, U.S.A.
2. A calibration model was developed using a water velocity simulation tank to relate mass loss of plaster standards to water velocity and temperature. The model was then used to calculate water velocity through artificial substrata embedded in the shallow hyporheic zone of four stream reaches based on in situ mass loss of plaster standards.
3. Water velocity in the hyporheic zone increased with stream order, was highest in early spring and winter during high stream base flows, and decreased with depth into the substratum. There was a strong interaction between depth and season: during periods of high stream discharge, water velocity through the upper level of the shallow hyporheic zone (0–10 cm into the substrate) increased disproportionately more than velocity at greater depths. Mean interstitial velocity in March ranged from 0 cm s–1 in the lowest level (20–30 cm) to 3.5 cm s–1 at the upper level (0–10 cm) at the first‐order site, and from 2.5 cm s–1 (20–30 cm) to 9.5 cm s–1 (0–10 cm s–1) at the fourth‐order site. Gradients in stream discharge and sediment permeability accounted for treatment effects.
4. Use of calibrated data improved the ability to resolve among‐season differences in interstitial water movement over the use of uncalibrated mass loss data. For some applications of the plaster standard method, empirical calibration may not be necessary.  相似文献   

7.
Since the discovery of Bacillus thuringiensis var. israelensis (Bti) in 1976, extensive literature has proved its efficacy to control mosquitoes and black flies, of which many species are known as important vectors of diseases or simply as pests of humans and animals. Since 1978, Bti has been used in many countries on all continents and numerous studies have been made on target mosquitoes and black flies, as well as nontarget organisms (NTO). This review analyses the results of 75 studies on these organisms covering approximately 125 families, 300 genera and 400 species. Different factors such as species, instar, feeding behaviour and environmental parameters (larval density, water temperature, suspended matter etc.) may drastically affect the efficacy of the Bti products. This is addressed in detail by reviewing the main factors affecting mosquitoes as well as black flies. The results of a wide range of laboratory and field experiments using different target and nontarget species, various preparations and formulations of Bti and different biotic or abiotic factors are present in the literature, making the data difficult to compare on a common basis. Our analysis shows that, under different application conditions, the effects of Bti on target and nontarget organisms may be hard to predict. Although Bti has been proclaimed to be relatively highly specific, some studies show that some NTO are affected either by single or repeated Bti treatments. Present use against black flies seems ecologically acceptable. High frequencies of application and/or overdosages against mosquitoes may result in some persistence of the toxin crystals and ultimately this may have adverse effects on the food web. A long-term study (published in 1998) in mosquito habitats has shown that intensive Bti treatments over three years did in fact produce an impact on the food web in wetlands. This raises questions, for the first time, on Bti environmental specificity. The importance of this impact is discussed and the alternatives for practical pest control are considered. Some modifications of Bti use against mosquitoes, guided by research, is probably the best of these alternatives.  相似文献   

8.
Many field tests have shown Bacillus thuringiensis subsp. israelensis ( Bti ) to be an effective simuliid larvicide. However, literature indicates that an effective evaluation and comparison of Bti -based formulations when tested in streams or rivers is difficult. Most field trials have been conducted in different rivers (different discharge, river profile, water temperature, suspended matter, larval species, etc.), thus rendering the evaluation of the performance of liquid formulations of Bti very arbitrary or even impossible. A new field procedure is proposed to evaluate the performance of liquid formulations of Bti in the same lotic environment and under similar abiotic and biotic conditions. The procedure, based on a system of gutters located on the bank of a stream, showed very good reproducibility of the mortality levels of the target pest(s) recorded at various distances (stations) along the stream over a two-year field trial, proving the efficacy of the system. The system allows either a single formulation or different formulations to be tested repeatedly in the same portion of a stream, thereby providing a more accurate evaluation of the performance of a Bti formulation or a much better comparison between different formulations. The use of the probit model (allowing comparison of slopes and intercepts) gives a reliable statistical value for the analysis of the results. Moreover, this system is not expensive and can be transferred easily to other streams or rivers.  相似文献   

9.
溪流潜流层大型无脊椎动物生态学研究进展   总被引:1,自引:0,他引:1  
张跃伟  袁兴中  刘红  任海庆   《生态学杂志》2014,25(11):3357-3365
溪流潜流层是溪流表层水和地下水相互作用的群落交错区,生物多样性丰富,是溪流生态系统的重要组成部分.大型无脊椎动物位于潜流层食物网的顶层,直接影响着潜流层物质和能量动态,是河流健康潜在的指示生物,调节着潜流层的环境净化和生态缓冲功能,对溪流生态系统发挥着至关重要的作用.潜流层大型无脊椎动物类群按生活史划分为偶入动物、非典型潜流层动物和典型潜流层动物.潜流层孔隙大小、孔隙水流速、溶解氧、温度、可利用的食物源、渗透系数和水力停留时间是影响大型无脊椎动物在潜流层分布的主要因素.对于潜流层这样一个特殊的生态界面,针对不同的研究目的应该选择合适的取样和调查方法.潜流层大型无脊椎动物的生活史和生活史对策,在溪流生态系统物质循环和能量流动中作用的定量化分析,基于潜流层大型无脊椎动物的河流健康评价体系,以及潜流层作为“庇护地”对于大型无脊椎动物分布和进化的生态学意义,都值得进一步关注和深入研究.  相似文献   

10.
The influence of riffle-pool units on hyporheic zone hydrology and nitrogen dynamics was investigated in Brougham Creek, a N-rich agricultural stream in Ontario, Canada. Subsurface hydraulic gradients, differences in background stream and groundwater concentrations of conservative ions, and the movement of a bromide tracer indicated the downwelling of stream water at the head of riffles and upwelling in riffle-pool transitions under base flow conditions. Channel water also flowed laterally into the floodplain at the upstream end of riffles and followed a subsurface concentric flow path for distances of up to 20 m before returning to the stream at the transition from riffles to pools. Differences in observed vs predicted concentrations based on background chloride patterns indicated that the hyporheic zone was a sink for nitrate and a source for ammonium. The removal of nitrate in the streambed was confirmed by the loss of nitrate in relation to co-injected bromide in areas of downwelling stream water in two riffles. Average stream water nitrate-N concentrations of 1.0 mg/L were often depleted to <0.005 mg/L near the sediment-water interface. Consequently, an extensive volume of the hyporheic zone in the streambed and floodplain had a large unused potential for nitrate removal. Conceptual models based mainly on studies of streams with low nutrient concentrations have emphasized the extent of surface-subsurface exchanges and water residence times in the hyporheic zone as important controls on stream nutrient retention. In contrast, we suggest that nitrate retention in N-rich streams is influenced more by the size of surface water storage zones which increase the residence time of channel water in contact with the major sites of rapid nitrate depletion adjacent to the sediment-water interface.  相似文献   

11.
We investigated lateral subsurface water exchange in a 2nd order mountain stream with a piezometer method. At both banks the stream hyporheic zone lost water to the riparian groundwater zone. Independently, the hydraulic heads at three sites in the streambed and in the riparian zone exhibited periodic, diurnal fluctuations. We attributed them to water consumption by the riparian trees, as solar radiation explained part of this additional variation. Our results demonstrate that subsurface water exchanges take place between the hyporheic zone and lateral riparian groundwater in spatially defined small‐scale flow paths. These small‐scale interactions occur within the context of large‐scale patterns of loss and gain of channel water.  相似文献   

12.
Along a single stream riffle, there is a typical flow pattern in which surface water enters the hyporheic zone in a downwelling zone at the head of the riffle and hyporheic water returns to the stream surface in an upwelling zone at the tail of the riffle. Distinct patterns of physical and chemical conditions in the hyporheic zone are likely to determine patterns of microbial activity and occurrence of hyporheic fauna. Interstitial water and core samples were taken at three depths in the downwelling and upwelling zones of a single riffle in the Speed River, Southern Ontario, Canada. Physical and chemical characteristics of the hyporheic water, bacterial density, protein content, detritus content and faunal composition of the hyporheic sediment were analysed. The downwelling and upwelling zones differed significantly in temperature, pH, redox potential, dissolved oxygen and nitrate with significant positive correlations occurring among the latter three. There were no differences in bacterial density or detritus content between the two zones nor between depths in either zone, but protein content, considered to be a measure of biofilm biomass, was significantly higher in the downwelling zone. Total density of hyporheic fauna and the number of taxa decreased with increasing depth in both upwelling and downwelling zones, and were positively correlated with surface water characteristics (oxygen, temperature and nitrate), sediment protein content and detritus; however, only a weak correlation was found with zone. The composition of taxa differed between the two zones, and faunal distribution was correlated with dissolved oxygen, detritus, protein content and depth.  相似文献   

13.
14.
Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.  相似文献   

15.
For a period of one year we injected a solution of stream water enriched with glucose and inorganic nitrogen and phosphorus at two experimental sites into the hyporheic sediments of the Oberer Seebach, Austria. The biofilm reacted with a quantitative increase after two weeks. The hyporheic invertebrates were sampled with the Cage Pipe Trap method, where the number of trapped animals is determined by the spatial density and the activity of the invertebrates. Within two and six weeks, the hyporheic invertebrates exhibited a reaction indicating an utilization of the new food resources. Over a longer period of one year, three different reaction patterns appeared. The number of nematods and ostracods increased extensively, presumably caused by the modification of the spatial structure of the environment due to biofilm growth. The number of the small sized invertebrates decreased, reflecting the reduced feeding effort. And the number of the large insect larvae increased indicating that these group is mainly limited by space. The hyporheic zone is described as a ‘self-cleaning DOC filter’, an attribute that is particularly assigned to the ecotone between the riparian soil zone and the stream hyporheic zone.  相似文献   

16.
1. We monitored streamwater and streambed sediment porewaters from White Clay Creek (WCC), SE Pennsylvania, for dissolved organic carbon (DOC), dissolved oxygen (DO) and conductivity to investigate organic matter processing within the hyporheic zone. Dissolved organic carbon and DO concentrations were higher in the streamwater than in the porewaters and, in many cases, concentrations continued to diminish with increasing depth into the streambed. 2. Hydrological exchange data demonstrated that the permeability of the stream bed declines with depth and constrains downwelling, effectively isolating porewaters >30 cm from streamwater. 3. End‐member mixing analysis (EMMA) based on conductivity documented a DOC source and DO sink in the hyporheic zone. We calculated hyporheic streambed DOC fluxes and respiration from the EMMA results and estimates of water flux. Based upon our calculations of biodegradable DOC entering the hyporheic zone, we estimate that DOC supports 39% of the hyporheic zone respiration, with the remaining 61% presumably being supported by entrained particulate organic carbon. Hyporheic respiration averaged 0.38 g C m?2 d?1, accounted for 41% of whole ecosystem respiration, and increased baseflow ecosystem efficiency from 46 to 59%. 4. Advective transport of labile organic molecules into the streambed concentrates microbial activity in near‐surface regions of the hyporheic zone. Steep gradients in biogeochemical activity could explain how a shallow and hydrologically constrained hyporheic zone can dramatically influence organic matter processing at the ecosystem scale.  相似文献   

17.
1. Microbes play key roles in nutrient transformation and organic matter mineralisation in the hyporheic zone but their short‐term responses to diel variations in discharge and temperature are unknown. Rates of microbial esterase activity were hypothesised to vary vertically and along a gradient of moisture in a drying sand‐bed stream where discharge fluctuated daily in response to evapotranspiration. 2. At ‘fully saturated’, ‘moist’ and ‘dry’ locations in three sites along a drying Australian sand‐bed stream, microbial activity at three depths (surface, 10 and 30 cm) was assessed using fluorescein diacetate hydrolysis. Samples were collected in mid‐summer in the late afternoon and again at dawn to assess diel variation in hydrolytic activity at each site and depth. Data loggers tracked diel variations in temperature at each depth. 3. Hydrolytic activity was up to 10‐fold greater in the surface sediments in late afternoon than at dawn in all habitats, and was correlated with surface sediment temperature. Diel differences in activity were not detected at 10 cm, although daily thermal cycles were evident at this depth. Unexpectedly, activity was marginally higher at dawn at 30 cm in all habitats, perhaps reflecting lags in temperature at that depth. 4. Overall, microbial activity declined with depth, strongly correlated with vertical trends in total organic matter and concentrations of dissolved phosphorus. Particulate organic matter, probably buried during a flood 35 days earlier, appeared largely responsible for these vertical trends. On the other hand, there was little evidence for hydrological exchange between much of the hyporheic zone and the surface stream, implying that processes in the subsurface zone of this stream are effectively isolated during baseflow in mid‐summer. 5. Diel cycles of wetting and drying in the moist habitats did not enhance esterase activity relative to the dry or fully saturated habitats. Sediment moisture was not correlated with microbial activity, and mats of senescent algae appeared to inhibit water loss from surface sediments in the moist habitat. In this sand‐bed stream, local diel fluctuations in water level appear to have less influence on microbial activity and mineralisation of organic matter in the sediments than occasional floods that bury leaf litter and renew many hyporheic zone functions. Subreach‐scale processes seem to be the major driving force of microbial processes and nutrient cycling in this sand‐bed river.  相似文献   

18.
1. The ability of hyporheic sediments to exchange water and retain ammonium and phosphate in the Riera Major stream ,North-East Spain, under different discharge conditions was measured by conducting short-term nutrient and chloride additions. 2. The mean exchange coefficients from free-flowing water to the storage zone (k1) and vice versa (k2) were 0.82 × 10–4 s??1 and 7 × 10??3 s??1, respectively. The ratio of storage zone cross-sectional area to stream cross-sectional area (AS/A) averaged 2.8 × 10–2 and was negatively correlated with discharge (r = –0.85, d.f. = 13, P < 0.001). 3. The percentage of hyporheic zone water which came from surface water varied as a function of discharge and hyporheic depth, ranging between 33% and 95% at 25 cm depth, and between 78% and 100% at 10 cm depth. 4. The nutrient retention efficiency in the hyporheic zone at 10 cm depth measured as uptake length (Swh) was less than 3.3 cm for ammonium and 37 cm for phosphate. Higher nutrient retentions were measured in the sediments at 10 cm depth than at 25 cm, indicating that near-surface sediments were involved more actively in phosphate retention than the deeper hyporheic sediments. The lack of ammonium at any depth of the hyporheic zone showed that ammonium was very rapidly taken up in the surfacial sediments.  相似文献   

19.
Water and dissolved nitrogen flows through the hyporheic zone of a 3rd-order mountain stream in Hokkaido, northern Japan were measured during a small storm in August 1997. A network of wells was established to measure water table elevations and to collect water samples to analyze dissolved nitrogen concentrations. Hydraulic conductivity and the depth to bedrock were surveyed. We parameterized the groundwater flow model, MODFLOW, to quantify subsurface flows of both stream water and soil water through the hyporheic zone. MODFLOW simulations suggest that soil water inflow from the adjacent hill slope increased by 1.7-fold during a small storm. Dissolved organic nitrogen (DON) and ammonium (NH 4 + ) in soil water from the hill slope were the dominant nitrogen inputs to the riparian zone. DON was consumed via mineralization to NH 4 + in the hyporheic zone. NH 4 + was the dominant nitrogen species in the subsurface, and showed a net release during both base and storm flow. Nitrate appeared to be lost to denitrification or immobilized by microorganisms and/or vegetation in the riparian zone. Our results indicated that the riparian and hyporheic system was a net source of NH 4 + to the stream.  相似文献   

20.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号