首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Choline acetyltransferase has been purified from three invertebrate species, namely snail (Helix aspersa), cockroach (Periplaneta americana) and horse shoe crab (Limulus polyphemus.) All three enzymes followed a Theorell-Chance enzyme mechanism with a sequential addition of the substrates. All three enzymes were activated by sodium and potassium chloride and inhibited by high concentrations of magnesium or calcium chloride. The apparent Km for choline and acetyl-CoA was for snail: Kmch= 370 μm ,KmAcetyl-CoA= 51μm ; cockroach:KmCh= 550 μm , KmAcely-CoA= 16 μm horse shoe crab:KmCn= 2700 μm KmAcctyl-coA= 68 μm CoA inhibited the enzymes competitively with respect to acetyl-CoA and non-competitively with respect to choline. Acetylcholine inhibited the enzymes competitively with respect to choline and non-competitively with respect to acetyl-CoA. All the enzymes were inhibited strongly by 5,5′-dithiobis (2-nitrobenzoate), iodoacetate, acryloylcholine, chloracetylcholine and 3-bromacetonyltrimethyl-ammonium. The enzymes were only weakly inhibited by the styrylpyridine derivatives. The isoelectric points were 5.3 and 5.0 for the horse shoe crab and cockroach enzymes respectively. All three enzymes showed low affinity for a cation-exchanger (CM-Sephadex).  相似文献   

2.
The substrate specificity of carnitine acetyltransferase   总被引:13,自引:12,他引:1       下载免费PDF全文
1. A study of the acyl group specificity of the carnitine acetyltransferase reaction [acyl-(-)carnitine+CoASH right harpoon over left harpoon (-)-carnitine+acyl-CoA] has been made with the enzyme from pigeon breast muscle. Acyl groups containing up to 10 carbon atoms are transferred and detailed kinetic investigations with a range of acyl-CoA and acylcarnitine substrates are reported. 2. Acyl-CoA derivatives with 12 or more carbon atoms in the acyl group are potent reversible inhibitors of carnitine acetyltransferase, competing with acetyl-CoA. Lauroyl- and myristoyl-CoA show a mixed inhibition with respect to (-)-carnitine, but palmitoyl-CoA competes strictly with this substrate also. Palmitoyl-dl-carnitine shows none of these effects. 3. Ammonium palmitate inhibits the enzyme competitively with respect to (-)-carnitine and non-competitively with respect to acetyl-CoA. 4. It is suggested that a hydrophobic site exists on the carnitine acetyltransferase molecule. The hydrocarbon chain of an acyl-CoA derivative containing eight or more carbon atoms in the acyl group may interact with this, which results in enhanced acyl-CoA binding. Competition occurs between ligands bound to this hydrophobic site and the carnitine binding site. 5. The possible physiological significance of long-chain acyl-CoA inhibition of this enzyme is discussed.  相似文献   

3.
R Roskoski  C T Lim  L M Roskoski 《Biochemistry》1975,14(23):5105-5110
Choline acetyltransferase (EC 2.3.1.6) catalyzes the biosynthesis of acetylcholine according to the following chemical equation: acetyl-CoA + choline in equilibrium to acetylcholine + CoA. In addition to nervous tissue, primate placenta is the only other animal source which contains appreciable acetylcholine and its biosynthetic enzyme. Human brain caudate nucleus and human placental choline acetyltransferase were purified to electrophoretic homogeneity using ion-exchange and blue dextran-Sepharose affinity chromatography. The molecular weights determined by Sephadex G-150 gel filtration and sodium dodecyl sulfate gel electrophoresis are 67000 plus or minus 3000. N-Ethylmaleimide, p-chloromercuribenzoate, and dithiobis(2-nitrobenzoic acid) inhibit the enzyme. Dithiothreitol reverses the inhibition produced by the latter two reagents. The pKa of the group associated with N-ethylmaleimide inhibition is 8.6 plus or minus 0.3. A chemically competent acetyl-thioenzyme is isolable by Sephadex gel filtration. The enzymes from the brain and placenta are thus far physically and biochemically indistinguishable.  相似文献   

4.
Abstract: :The kinetic mechanism of bovine brain choline acetyltransferase has been studied using acetylaminocholine as a dead-end inhibitor and di-methylaminoethanol as an alternate substrate. Acetylaminocholine inhibition is competitive with respect to acetylcholine and noncompetitive with respect to choline. Dimethylaminoethanol exhibits one-sixth the Vmax obtained with choline. These results suggest that the reaction obeys a sequential random kinetic mechanism. Salt activation of the enzyme is nonspecific with respect to monovalent anions, and results in a parallel increase in the Km for choline and the Ki for acetylcholine. These results support the conclusion that salt activation of choline acetyltransferase is a nonspecific effect and that no specific chloride ion regulation of this enzyme occurs in vivo .  相似文献   

5.
1. A method for measuring small amounts of acetyl-CoA synthesized in subcellular fractions of the brain from pyruvate and released from particles into the incubation medium has been developed by using placental choline acetyltransferase and choline in the incubation medium to transform acetyl-CoA into acetylcholine. Acetylcholine is measured by biological assay. Optimum conditions of incubation are described. 2. With fresh mitochondria, a decrease of acetyl-CoA output into the medium is observed in the presence of ATP or ADP, and an increase in the presence of calcium chloride or 2,4-dinitrophenol. Fluorocitrate and malonate have little or no effect. 3. After the mitochondria had been treated with ether, the release of acetyl-CoA into the medium is much larger; presumably, nearly all acetyl-CoA synthesized is then released and transformed into acetylcholine under the conditions used. The release of acetyl-CoA is diminished in the presence of Krebs-cycle intermediates and ADP. 4. Of all subcellular fractions, the highest acetyl-CoA production from pyruvate is found in the crude mitochondria; rates up to 51 mumoles of acetyl-CoA/g. of original tissue/hr. are observed in ether-treated samples. 5. The activities of acetyl-CoA synthetase and ATP citrate lyase found in homogenates and nerve-ending fractions of brain tissue are considerably lower than those of pyruvate oxidase complex and choline acetyltransferase. 6. The bearing of some of the findings on the question of the source of acetyl radicals for the synthesis of acetylcholine in vivo is discussed.  相似文献   

6.
1. Michaelis constants for substrates of carnitine acetyltransferase have been shown to be independent of the concentration of second substrate present. This applies to the forward reaction between acetyl-l-carnitine and CoASH, and to the back reaction between l-carnitine and acetyl-CoA. 2. Product inhibition of both forward and back reactions has been studied. Evidence has been obtained for independent binding sites for l-carnitine and CoASH. Acetyl groups attached to either substrate occupy overlapping positions in space when the substrates are bound to the enzyme. 3. Possible reaction mechanisms involving the ordered addition of substrates have been excluded by determining kinetic constants in the presence and absence of added product. 4. d-Carnitine and acetyl-d-carnitine have been shown to inhibit competitively with respect to l-carnitine and acetyl-l-carnitine. 5. It is concluded that the mechanism of action of carnitine acetyltransferase involves four binary and two or more ternary enzyme complexes in rapid equilibrium with free substrates, the interconversion of the ternary complexes being the rate-limiting step. The possible intermediate formation of an acetyl-enzyme cannot be excluded, but this could only arise from a ternary complex.  相似文献   

7.
Incubation of rat forebrain synaptosomes with choline mustard aziridinium ion in a sodium-rich medium caused a time-dependent inhibition of the high-affinity transport of choline, as well as a significant decrease in intrasynaptosomal choline acetyltransferase activity. In the absence of added sodium choline uptake by a sodium-independent mechanism was also blocked in a time-dependent manner but intrasynaptosomal choline acetyl-transferase activity was unaltered. Neither monoethylcholine nor hemicholinium-3 changed intrasynaptosomal choline acetyl-transferase activity but competitively inhibited the transport of choline. The results indicate that there may be a fraction of choline acetyltransferase that is closely associated with the sodium-dependent high-affinity choline transport system and that this fraction can be irreversibly inhibited by choline mustard aziridinium ion, perhaps indirectly mediated by alkylation of the carrier.  相似文献   

8.
Abstract— Choline acetyltransferase (EC 2.3.1.6) was partially purified from human caudate nucleus and putamen, human sciatic nerve, rabbit and rat brain, and rabbit sciatic nerve. Kinetic constants were determined under the same conditions for all six extracts. Extrapolated Km values were between 6.6 and 18 μM for acetyl-CoA and between 0.4 and 1.2 mM for choline. Product inhibition patterns indicated that ChAc from both central and peripheral nervous tissues of man and the rabbit obeys a Theorell-Chance mechanism. Kinetic parameters suggest a possible influence on ACh synthesis of the in vivo concentration ratio, CoA/acetyl-CoA.  相似文献   

9.
The pyrazine diuretic amiloride inhibits the Na+/Ca2+ exchange activity of cardiac sarcolemmal vesicles in a concentration-dependent way. A good relationship between the uptake of amiloride by the vesicles and the inhibition of the exchanger has been found. Kinetic analyses indicate that the inhibition of Na+/Ca2+ exchange activity by amiloride is non-competitively removed by Ca2+ and competitively overcome by an outwardly directed Na+ gradient.  相似文献   

10.
M Naoi  T Nagatsu 《Life sciences》1987,40(11):1075-1082
Type A monoamine oxidase (MAO-A) in human placental mitochondria was competitively inhibited by naturally occurring substances, quinoline and quinaldine, using kynuramine as substrate. Quinoline had a higher affinity for MAO than kynuramine. MAO-A in human brain synaptosomal mitochondria was also competitively inhibited by quinoline, while type B MAO (MAO-B) was reversibly and non-competitively inhibited by quinoline. Quinoline inhibited MAO-A much more potently than MAO-B. Of several compounds structurally similar to quinoline, isoquinoline noncompetitively inhibited MAO-A and -B activity.  相似文献   

11.
Abstract— A method for the histochemical identification of choline acetyltransferase has been investigated further by studying the effects of certain inhibitors of the enzyme both on rat brain homogenates and on the localization of the enzyme in tissue sections.
It was confirmed that acetyl-CoA hydrolase activity both in homogenates and in tissue sections is inhibited by preincubation in 1 mM-DFP. The effects of the choline acetyltransferase inhibitors chloro- and bromoacetylcholine on the appearance of histochemical staining were related to their activity in homogenates and tissue slices. Bromoketone was found to inhibit choline acetyltransferase in homogenates and, less efficiently, in tissue sections but it also inhibited the hydrolysis of acetyl-CoA by some other unknown enzyme which is inactivated by 1 mM-DFP.
The results obtained with the choline acetyltransferase inhibitors provide support for the specificity of the histochemical method.  相似文献   

12.
Thiolactomycin, an antibiotic with the structure of (4S)-(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene-4-++ +thiolide, selectively inhibits type II fatty acid synthases. The mode of the thiolactomycin action on the fatty acid synthase system of Escherichia coli was investigated. Of the six individual enzymes of the fatty acid synthase system, [acyl-carrier-protein] (ACP) acetyltransferase and 3-oxoacyl-ACP synthase were inhibited by thiolactomycin. On the other hand, the other enzymes were not affected by this antibiotic. The thiolactomycin inhibition of the fatty acid synthase system was reversible. As to ACP acetyltransferase, the inhibition was competitive with respect to ACP and uncompetitive with respect to acetyl-CoA. As to 3-oxoacyl-ACP synthase, the inhibition was competitive with respect to malonyl-ACP and noncompetitive with respect to acetyl-ACP. The thiolactomycin action on the fatty acid synthase system was compared with that of cerulenin.  相似文献   

13.
1. Michaelis constants of goldfish brain choline acetyltransferase were found to depend on the concentration of the second substrate present and on the temperature to which the fish had been adapted. 2. Primary plots constructed from results obtained with enzyme prepared from cold-adapted or warm-adapted fish indicated that synthesis of acetylcholine took place by a sequential mechanism. 3. The affinity of choline acetyltransferase for acetyl-CoA was about 100 times that for choline irrespective of whether the enzyme had been prepared from warm-adapted or cold-adapted fish. 4. The maximum rate at which choline acetyltransferase synthesized acetylcholine and the energy of activation for this synthesis remained independent of the previous environmental temperature of the fish. 5. The affinity of choline acetyltransferase for choline and acetyl-CoA showed a complex dependence on temperature. The affinity of the enzyme from cold-adapted fish for substrates increased as the incubation temperature was lowered, whereas that of the enzyme from warm-adapted fish first increased and then decreased. 6. The maximum affinity of choline acetyltransferase for both substrates, from both cold-adapted and warm-adapted fish, occurred at temperatures that corresponded approximately to the respective environmental temperatures of the fish. 7. These changes in enzyme affinity for substrates are not thought to be due to the presence of isoenzymes. Their adaptive significance is unknown, but it could be connected with the maintenance of the enzyme in a stable form.  相似文献   

14.
Abstract— A fluorometric assay for choline acetyltransferase has been developed. This assay is based on coupling the choline acetyltransferase dependent formation of acetyl-CoA from acetylcholine and coenzyme A, to the reactions catalyzed by the enzymes citrate synthase and malic dehydrogenase. Although this assay is not as sensitive as previously described radiometric assays, it can be conveniently used during enzyme purification.
Employing this assay method, choline acetyltransferase has been purified from human placenta to a specific activity of 92.7 μmol acetylcholine formed/min/mg protein.  相似文献   

15.
The substrate kinetic properties of histamine methyltransferase from human skin were studied at limiting concentrations of both histamine and S-adenosylmethionine. Substrate inhibition by histamine was observed at concentrations above 10 microM. Primary plots showed evidence of a sequential reaction mechanism. The Michaelis constants were derived from secondary plots of slopes from the primary plots ([S]/v versus [S]) versus reciprocal of the second substrate concentration. The mean Km values for histamine and S-adenosylmethionine were 4.2 and 1.8 microM respectively. Histamine in concentrations of 25-100 microM inhibited enzyme activity uncompetitively with respect to S-adenosylmethionine. No substrate inhibition was observed with S-adenosylmethionine. To elucidate the reaction mechanism further, inhibition by the two products, S-adenosylhomocysteine and 1-methylhistamine, was studied. S-Adenosylhomocysteine inhibited non-competitively with respect to histamine and competitively with respect to S-adenosylmethionine. 1-Methylhistamine inhibited non-competitively with respect to histamine and to S-adenosylmethionine. These results are interpreted as providing evidence for an ordered sequential Bi Bi reaction mechanism, with the methyl-group donor S-adenosylmethionine as the first substrate that adds to the enzyme and histamine as the second substrate. 1-Methylhistamine is the first product to leave the enzyme and S-adenosylhomocysteine is the second. The results are discussed in terms of the possible role that this enzyme could play in the modulation of histamine-mediated reactions in skin.  相似文献   

16.
The newly developed monoclonal antibody technology was applied to the production of antibodies selective for Drosophila melanogaster choline acetyltransferase (EC 2.3.1.6). Two stable cell lines, 1C8 and 1G4, were isolated from NS-1/spleen cell hybrids by employing a choline acetyltransferase enzyme activity-screening method. Both cell lines were cloned twice and were maintained in continuous culture and as ascites tumors. Purified antibody was isolated from ascites fluids by pH elution after adsorption to Protein A-Sepharose. Both antibodies eluted from the Protein A-Sepharose as a single subclass, IgG1, and directly inhibited choline acetyltransferase activity. Scatchard analysis of titration data for choline acetyltransferase antibody-enzyme interaction generated linear curves for both antibodies: KA for 1C8 was 2.77 X 10(7) M-1 and KA for 1G4 was 0.78 X 10(7) M-1. Inclusion of the choline acetyltransferase substrate acetyl-CoA at 10 times the KM in the antibody-enzyme reaction mixture substantially reduced the level of inhibition observed with both antibodies; choline, however, exhibited no protective effect. Neither antibody reacted with choline acetyltransferase-containing extracts of vertebrates or other insect neural tissues. We conclude that the two antibodies are nonidentical, monoclonal, and highly selective for D. melanogaster choline acetyltransferase, both reacting at or near the acetyl-CoA binding region of the enzyme-active site.  相似文献   

17.
Abstract— The inhibition of choline acetyltransferase by acetylcholine in vitro occurs at a concentration of 10 m m and increases progressively to 45 per cent at a concentration of 100 m m . The inhibition is competitive for choline and noncompetitive for acetyl-CoA. It is suggested that the synthesis of acetylcholine may be controlled by its accumulation in synaptic vesicles.  相似文献   

18.
Kim AR  Rylett RJ  Shilton BH 《Biochemistry》2006,45(49):14621-14631
Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 A along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoA to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the KM for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.  相似文献   

19.
—Choline acetyltransferase was extracted from Lactobacillus plantarum by relatively gentle procedures involving penicillin treatment, osmotic shock and passage through a French pressure cell. After partial purification, the extract was compared with choline acetyltransferase of calf caudate nucleus for kinetic properties and response to a class of inhibitors which consists of analogues of styrylpyridine. Both enzymes obeyed a sequential mechanism with Michaelis constants for the bacterial enzyme, Km= 8 μm vs. acetyl-CoA and 0·44 mm vs. choline; and for the caudate nucleus enzyme, Km= 15 μm vs. acetyl-CoA and 0·8 mm vs. choline. Both were stabilized by dithiothreitol and EDTA. The extracts differed in that the bacterial enzyme was more labile and apparently was susceptible to conformational changes, which modified its response to the styrylpyridinetype inhibitors. The use of intact cells of Lactobacillus plantarum as an in vivo system for studying the inhibition of choline acetyltransferase by styrylpyridines was possible only for non-quaternary analogues, which exist as an equilibrium mixture of charged and uncharged species.  相似文献   

20.
1. Carbonic anhydrase (E.C.4.2.1.1) catalysed CO2 hydration was studied with enzymes from mammalian and insect sources at CO2 concentrations of 7.6-30.8 mM. 2. At 0.01-0.15 M, potassium chloride (KCl) or choline chloride (ChCl) markedly inhibited all 8 mammalian enzymes studied. 3. Inhibition by KCl is always greater than that associated with ChCl. 4. KCl non-competitively inhibits and choline chloride competitively inhibits bovine carbonic anhydrase. 5. Carbonic anhydrase obtained from fat body, integumentary epithelium and midgut tissues of larval tobacco hornworms, Manduca sexta, is greatly stimulated by KCl and slightly inhibited by ChCl. 6. We propose that the effect of K+ on mammalian and insect carbonic anhydrases if fundamentally different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号