首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paul Nathan 《Cryobiology》1974,11(4):305-311
Human lymphocytes stored in the frozen state may be thawed, placed on cytotoxicity plates, refrozen, rethawed and used for screening sera or tissue-typing of the cells. The simple procedure described uses only a ?90 °C refrigerator for both freezing and storage of the cells. The technique permits a laboratory to collect a variety of cells over a long period, so that a set of test plates with cells from 10 to 20 donors can be prepared when a convenient number of donor cells are available. Also, the refrozen cells in cytotoxicity test plates may be warmed to the temperature of dry ice for 24 hr, returned to the refrigerator set at a slightly lower temperature, and at a later time, these cells may be thawed and used for serum screening. In view of these results, it appears possible to ship the refrozen cells from one laboratory to another using simple dry ice storage during the transfer. Negative reactions due to soluble antigens in the suspending sera can be obviated by washing out these sera and replacing them with medium 199 or alternatively, fetal calf serum can be used to replace the human serum in the suspending media.  相似文献   

2.
The objective of the following paper is to describe a new technology for large volume and double freezing of semen in 12 mL test tubes. Semen from two different bulls was frozen with a new technique using 12 mL test tubes and was refrozen after thawing in mini straws. All freezing was done in a "Multi thermal gradient" (MTG) freezing apparatus, which moves the container at a constant velocity (V) through a thermal gradient (G) producing a controlled cooling rate B = (G) x (V). Each of the two bulls ejaculated were evaluated for post thaw motility in the lab and then in a field trial which was carried out in a split sample mode. We inseminated 105 cows after a double freezing/thawing cycle, and another 123 cows were inseminated with semen frozen in mini-straws and a conventional method. The results showed a 75 +/- 5% post thaw motility after freezing a 12 mL test tube and 50 +/- 5% after a second freezing/thawing in mini-straws, respectively. Controlled vapour freezing showed a 60 +/- 10% post thaw motility. The results of the field trial showed a pregnancy rate of 44% (47/105) for the double freezing group in comparison to 45.5% (56/123) for the controlled group. These results can be beneficial for large volume freezing, and therefore for bull semen cryobanking in a large volume which will be followed by second freezing in a regular insemination volume.  相似文献   

3.
Long-term storage of cell stocks insures that cells are available for use whenever needed. Cryopreservation of cells is the method of choice for preservation of important or rare cell stocks. There are several factors to consider when establishing a protocol for freezing, thawing, and recovery of cells after storage. These parameters may include cell concentration, cryoprotectant choice and concentration, and thawing rate among others. Further, the assessment of cell viability and/or function prior to and following cryopreservation is imperative in order to accurately determine downstream utility as well for optimizing the cryopreservation process. This chapter is designed to provide guidance and insight into developing robust and successful protocols for preserving cells that will preserve cell stocks and provide optimal cell yield and viability.  相似文献   

4.
Ethical, economic and technical reasons hinder regular supply of freshly isolated hepatocytes from higher mammals such as monkey for preclinical evaluation of drugs. Hence, we aimed at developing optimal and reproducible protocols to cryopreserve and thaw parenchymal liver cells from this major toxicological species. Before the routine use of these protocols, we validated them through a multi-laboratory study. Dissociation of the whole animal liver resulted in obtaining 1-5 billion parenchymal cells with a viability of about 86%. An appropriate fraction (around 20%) of the freshly isolated cells was immediately set in primary culture and various hepato-specific tests were performed to examine their metabolic, biochemical and toxicological functions as well as their ultrastructural characteristics. The major part of the hepatocytes was frozen and their functionality checked using the same parameters after thawing. The characterization of fresh and thawed monkey hepatocytes demonstrated the maintenance of various hepato-specific functions. Indeed, cryopreserved hepatocytes were able to survive and to function in culture as well as their fresh counterparts. The ability for synthesis (proteins, ATP, GSH) and conjugation and secretion of biliary acids was preserved after deep freeze storage. A better stability of drug metabolizing activities than in rodent hepatocytes was observed in monkey. After thawing, Phase I and Phase II activities (cytochrome P450, ethoxycoumarin-O-deethylase, aldrin epoxidase, epoxide hydrolase, glutathione transferase, glutathione reductase and glutathione peroxidase) were well preserved. The metabolic patterns of several drugs were qualitatively and quantitatively similar before and after cryopreservation. Lastly, cytotoxicity tests suggested that the freezing/thawing steps did not change cell sensitivity to toxic compounds.  相似文献   

5.
S.A. Birkeland 《Cryobiology》1976,13(4):442-447
The influence of a series of factors on the frozen storage of lymphocytes was investigated. The cells were frozen using different freezing programmes, using the cryoprotectants dimethyl sulphoxide and glycerol in different concentrations in the freezing medium, and with variations in the period of exposure of cells to cryoprotectants before freezing and after thawing. Cell viability was evaluated by quantitative measurements of the cell-mediated immune response after stimulation with phytohemagglutinin, pokeweed mitogen, concanavalin A, and allogenic cells in mixed lymphocyte cultures. The factors investigated were found to have an important effect on the immune response, so that careful investigation and exact specification of the freezing system are necessary before frozen cells are used in blast-transformation tests. The best freezing programme had a duration of approximately 40 min with a smooth progression through the temperature range where phase transition takes place. The optimum dimethyl sulphoxide concentration in this programme was 8–10%. Dimethyl sulphoxide had no toxic effect on the cells, and no equilibration period was necessary prior to freezing. An equilibration period of 15 min with 10% glycerol was even better than the optimum programme with dimethyl sulphoxide.  相似文献   

6.
Do heat shock proteins provide protection against freezing?   总被引:4,自引:0,他引:4  
Yeast cells were frozen by plunging directly into liquid nitrogen (LN2) after exposure at 43 degrees C. Both the cells frozen without prior exposure to heat shock and those treated with cycloheximide showed almost 100% loss of viability during freezing and thawing. Heat exposure prior to freezing and thawing significantly increased the cell viability. This increase in cell viability was associated with the induction of heat shock protein synthesis, which was detected by gel electrophoresis. This protein may act by stabilizing the macromolecules and by increasing the hydrophobic interactions.  相似文献   

7.
The amphiphilic α-helical peptide, Td3717, is a bi-functional synthetic peptide that acts as both a polycation for DNA binding and a ligand for targeted delivery to tumor cells. Td3717 forms a stable complex with plasmid DNA, and the complex maintained high transfection efficiency after storage at 4 °C for six months and after four freeze/thaw cycles. During the storage and freeze/thaw cycling, the particle size of the DNA/Td3717 complex remained less than 100 nm. The size of the complex is an important factor for its internalization into cells via the endocytosis pathway; therefore, the stability of the particles will strongly contribute to high transfection efficiencies after storage and repeated freezing/thawing.  相似文献   

8.
In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5–10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.  相似文献   

9.
KiBeom Lee   《Process Biochemistry》2004,39(12):2233-2239
Acquired freeze–thaw tolerance was investigated for Lactococcus lactis ssp. diacetylactis. Pre-treatment of microorganisms at less severe temperatures to initiate cold tolerance gave L. lactis ssp. diacetylactis improved cell viability after successive freezings and thawings. The ability of cells to survive freezing–thawing was dependent on factors experienced prior to freezing. Factors affecting lactic acid bacteria survival during freezing–thawing cycles include different diluents, growth phase, and cold temperatures. Viability experiments showed that this strain displaying cold shock cryotolerance had an improved survival capacity in stationary phase. The plasmid contents of lactic acid bacteria isolated from different types, strains DRC-2 and DRC-2C, were examined and compared with the plasmid contents of culture collection strains both before and after cold shock treatment. Using agarose gel electrophoresis, no obvious correlation between the cold shock response and the number of plasmids in the cell could be observed.  相似文献   

10.
Summary Recently, it was demonstrated that the application of slow-cooling cryopreservation protocols to adherent human embryonic stem (hES) cell colonies, cultured on matrigel or murine embryonic fibroblast feeder layers, resulted in marked improvement in postthaw viability and reduction in cell differentiation. However, the use of commercially available culture plates for this purpose presents several limitations. Most obviously, these plates are not designed for cryopreservation or to withstand the low temperatures encountered during liquid nitrogen cryopreservation, or both. The physical storage of cryopreserved plates is another consideration, in addition to difficulty in maintaining sterile conditions in liquid nitrogen storage and during the thaw phase in a water bath. Hence, a redesign of the cell culture plate for the cryopreservation of adherent hES cell colonies is proposed. In this model, a culture plate made of synthetic materials resistant to storage at −196° C of liquid nitrogen is designed, with readily attachable screw-cap culture wells that function as a replacement for cryovial storage. The detachable wells facilitate storage and after thawing can easily be reattached to a specially designed holding plate. Currently, there are no commercially available cell culture plates using this design concept. The proposed design is envisioned to facilitate the cryopreservation of intact adherent hES cell colonies that could assist the development of automated systems for handling bulk quantities of cells.  相似文献   

11.
The efficient and effective use of hepatocytes from larger species and rare human material requires a reliable storage method for cells not needed on the day of preparation. Cryopreservation would seem to be the only viable alternative. In this study the suitability of a published cryopreservation technique on dog, monkey and human hepatocytes has been examined and the cells were tested for functionality directly after thawing and subsequent to culture using steroid metabolism and hormone responsiveness of glycogen phosphorylase a. Monkey and human hepatocytes appear to survive the freezing and thawing process better than dog cells-the latter losing the ability to respond to adrenergic stimuli and their ability to maintain steroid metabolism in culture. Although monkey and human cells do preserve their steroid metabolising capacity after freeze/thawing, there is not the significant increase in enzyme activity seen during culturing freshly isolated cells. It would appear, therefore, that some damage has occurred to the cells during the freeze/thaw process. As previously noted, Williams' medium E is superior to Ham's F-10 in maintaining enzyme activities in culture. It is suggested that cryopreservation is the way forward for the development of stockpiles of viable hepatocytes for biomedical and toxicological research and development but that further modifications to the process are still necessary to optimise the maintenance of liver-specific functions in the thawed cells.  相似文献   

12.
《Cryobiology》2014,68(3):339-346
The use of sexed spermatozoa has great potential to captive population management in endangered wildlife. The problem is that the sex-sorting facility is a long distance from the semen collection place and to overcome this difficulty two freeze–thaw cycles may be necessary. In this study, effects of refreezing on brown bear electroejaculated spermatozoa were analyzed. We carried out two experiments: (1) to assess the effects of the two freezing–thawing cycles on sperm quality and to analyze three different elapsed times between freezing–thawing cycles (30, 90 and 180 min), and (2) to analyze the use of PureSperm between freezing–thawing cycles to select a more motile and viable sperm subpopulation which better survived first freezing. The motility, viability and undamaged acrosomes were significantly reduced after the second thawing respect to first thawing into each elapsed time group, but the elapsed times did not significantly affect the viability and acrosome status although motility was damaged. Our results with the PureSperm gradient showed higher values of viability in freezability of select sample (pellet) respect to the rest of the groups and it also showed a significant decrease in the number of acrosome damaged. In summary, the double freezing of bear semen selected by gradient centrifugation is qualitatively efficient, and thus could be useful to carry out a sex-sorting of frozen–thawed bear spermatozoa before to send the cryopreserved sample to a biobank. Given the low recovery of spermatozoa after applying a selection gradient, further studies will be needed to increase the recovery rate without damaging of the cell quality.  相似文献   

13.
Cell suspensions of carrot (Daucus carota L.) can be cryopreserved by slow freezing (about 2 C per minute) in medium containing dimethylsulfoxide as a cryoprotectant. After storage in liquid nitrogen and thawing they demonstrate a high viability and are able to resume growth. Such a method entirely fails to preserve clonal plantlets; somatic embryos cease organized development at the time of freezing and recover growth only by secondary embryogenesis. Modification of the procedure, involving the removal of superficial moisture from cryoprotectant-treated embryos and plantlets and enclosing them in a foil envelope before freezing, greatly improves their survival potential. The use of dimethylsulfoxide at levels between 2.5 and 20% (v/v) and freezing at rates between 1 and 5 C per minute yielded viable preparations under appropriate thawing conditions. In general, treatments which increased tissue dehydration before or during freezing were most successful when followed by relatively slow thawing. Conversely where dehydration to a lesser degree was achieved, more rapid thawing was advantageous. Postthawing washing or inoculation into liquid media was inhibitory to recovery. On semisolid regrowth medium, somatic embryos resumed normal development, whereas in plantlets the root and shoot meristem regions gave rise to new growth. In both cases, inclusion of activated charcoal in the medium promoted organized growth.  相似文献   

14.
Cryosurgery offers a promising therapeutic alternative for the treatment of prostate cancer. While often successful, complete cryoablation of cancerous tissues sometimes fails due to technical challenges. Factors such as the end temperature, cooling rate, duration of the freezing episode, and repetition of the freezing cycle have been reported to influence cryosurgical outcome. Accordingly, we investigated the effects of these variables in an in vitro prostate cancer model. Human prostate cancer PC-3 and LNCaP cultures were exposed to a range of sub-zero temperatures (−5 to −40 °C), and cells were thawed followed by return to 37 °C. Post-thaw viability was assessed using a variety of fluorescent probes including alamarBlue™ (metabolic activity), calceinAM (membrane integrity), and propidium iodide (necrosis). Freeze duration following ice nucleation was investigated using single and double freezing cycles (5, 10, and 20 min). The results demonstrated that lower freezing temperatures yielded greater cell death, and that LNCaP cells were more susceptible to freezing than PC-3 cells. At −15 °C, PC-3 yielded 55% viability versus 20% viability for LNCaP. Double freezing cycles were found to be more than twice as destructive versus a single freeze–thaw cycle. Both cell types experienced increased cell death when exposed to freezing temperatures for longer durations. When thawing rates were considered, passive (slower) thawing following freezing yielded greater cell death than active (faster) thawing. A 20% difference in viability between passive and active thawing was observed for PC-3 for a 10 min freeze. Finally, the results demonstrate that just reaching −40 °C in vitro may not be sufficient to obtain complete cell death. The data support the use of extended freeze times, multiple freeze–thaw cycles, and passive thawing to provide maximum cell destruction.  相似文献   

15.
Cell culture has become increasingly important in cardiac research, but due to the limited proliferation of cardiomyocytes, culturing cardiomyocytes is difficult and time consuming. The most commonly used cells are neonatal rat cardiomyocytes (NRCMs), which require isolation every time cells are needed. The birth of the rats can be unpredictable. Cryopreservation is proposed to allow for cells to be stored until needed, yet freezing/thawing methods for primary cardiomyocytes are challenging due to the sensitivity of the cells. Using the proper cryoprotectant, dimethyl sulfoxide (DMSO), cryopreservation was achieved. By slowly extracting the DMSO while thawing the cells, cultures were obtained with viable NRCMs. NRCM phenotype was verified using immunocytochemistry staining for α-sarcomeric actinin. In addition, cells also showed spontaneous contraction after several days in culture. Cell viability after thawing was acceptable at 40-60%. In spite of this, the methods outlined allow one to easily cryopreserve and thaw NRCMs. This gives researchers a greater amount of flexibility in planning experiments as well as reducing the use of animals.  相似文献   

16.
Effect of varying freezing and thawing rates in experimental cryosurgery   总被引:5,自引:0,他引:5  
Six different freezing/thawing programs, which varied freezing rate, duration of freezing, and thawing rates, were used to investigate the effect of these factors on cell destruction in dog skin. The range of tissue temperatures produced was from -15 to -50 degrees C. The extent of destruction was evaluated by skin biopsies 3 days after cold injury. In single, short freezing/thawing cycles, the temperature reached in the tissue was the prime factor in cell death. Longer freezing time and slow thawing were also important lethal factors which increased destruction of cells. Cooling rate, whether slow or fast, made little difference in the outcome. The experiments suggested that present-day, commonly employed cryosurgical techniques, which feature fast cooling, slow thawing, and repetition of the freeze/thaw cycle, should be modified by the use of maintenance of the tissue in the frozen state for several minutes and slow thawing. Thawing should be complete before freezing is repeated. These modifications in technique will maximize tissue destruction, an important consideration in cancer cryosurgery.  相似文献   

17.
Addition of antioxidants into the preservation solution improved the cryoprotection of human bone marrow cells. The viability was studied by the growth of GM-CFC in agar culture before and after storage at -196 degrees C. All used antioxidative drugs (selenomethionine, methionine, tocopherol, penicillin/Fe++) increased the tolerance of the stem cells to freezing and thawing and elevated the number of surviving GM-CFC up to the twofold in comparison with that of controls. More immature colony forming cells were especially protected.  相似文献   

18.
S Sandler  A Andersson 《Cryobiology》1984,21(5):503-510
It was the aim of the present study to investigate the significance of culture before and after freeze-thawing of isolated mouse pancreatic islets. To evaluate the impact of culture before freezing (5 degrees C/min; 2 M dimethyl sulfoxide), islets were frozen either directly after isolation or after 2, 4, or 7 days of culture in medium RPMI 1640. The culture period after thawing was 7 days. Islets immediately frozen exhibited virtually no (pro)insulin biosynthesis and also a severe inhibition of glucose-stimulated insulin release. The precultured (2-7 days), frozen islets synthesized and released insulin at rates comparable to those of nonfrozen, cultured islets. Studies of the effects of culture after freeze-thawing were performed after a 3-day culture period prior to freezing. The (pro)insulin biosynthetic rates did not differ between islets cultured for 0-7 days after thawing. There was an apparent increase of glucose-stimulated insulin release when the islets were cultured for more than 2 days after thawing. It may be that the decreased viability of islets frozen immediately after isolation was due to minor cell damage induced by the collagenase incubation. During culture the islets may recover and become more resistant to freeze-damage. The beneficial effect of culture after thawing may reflect the loss of damaged cells, which otherwise would influence the results of the viability tests.  相似文献   

19.
The damage caused to bull sperm by freezing and thawing them without cryoprotectants was assessed in both intact and membrane-extracted cells. Preparations of membrane-extracted cells were produced by treating the sperm with 0.1% Triton X-100 and motility was restored with exogenously applied ATP and Mg2+. Motile demembranated sperm showed no detectable reduction in motility after freezing and thawing. In contrast, when intact cells where subjected to freezing and thawing they lost all motility. These damaged cells were also restored to motility when exogenous ATP and Mg2+ were added to the sperm mixture. Apparently freezing and thawing sperm cells causes damage to the plasma membrane which permits ATP and Mg2+ to freely enter or leave the cells, but does not damage the components of the sperm cell which generate motility.The effects of storage temperature on frozen demembranated sperm were also explored. Sperm held at ?20 °C showed marked structural changes and progressively decreased motility after prolonged storage. When sperm were frozen at ?20 °C the mitochondrial structures were completely lost after 48 to 72 hr and ATP caused the disintegration of the flagellum rather than initiating motility. Sperm which were frozen at ?76 °C retained motility after short periods of storage, but showed a significant decline in motility when thawed after 8 days. Demembranated sperm which were kept frozen at ?196 °C showed no significant loss of motility when thawed after 1 year of storage.  相似文献   

20.
Experiments were carried out to determine if thymic-derived lymphocytes (T-cells) could be differentially damaged by hypotonic and/or freeze-thaw stress. The uptake of 3H-thymidine after stimulation of murine spleen cells with phytohemagglutinin-P (PHA-P) or bacterial endotoxin (LPS) was used as an indicator of recovery. Optimal freezing and thawing techniques showed that 100% of LPS-responsive cells could be recovered, compared to 65% of PHA-responsive cells. These differences could be increased by treatment of spleen cells with 0.17 m NH4Cl prior to freezing and thawing. This represented a recovery of 50% of LPS-responsive cells and less than 10% of PHA-responsive cells. A similar effect could be obtained by treating NH4Cl-treated spleen cells with distilled water prior to culture. It is hypothesized that T-cells are more susceptible to osmotic damage than B-cells due to their differences in membrane characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号