首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Primate and equine species are thought to be unique among mammals in synthesizing placental gonadotropin glycoprotein hormones. Human chorionic gonadotropin (CG) and equine pregnant mare's serum gonadotropin (PMSG) are produced in placenta by the specific activation of a glycoprotein hormone alpha-subunit gene and a corresponding beta-subunit gene. The evolutionary mechanisms for the apparently independent acquisition of tissue specificity were investigated by cloning the 5' flanking region of the equine alpha-subunit gene and comparing the DNA elements and trans-acting factors involved in placental expression. We find that though the equine gene is expressed and induced by cAMP, it does not contain the elements known to confer tissue-specific expression to the human gene, the cAMP response element (CRE) and the trophoblast-specific element (TSE), nor does it bind to the trans-acting factors CREB and TSEB. Instead, an additional factor (alpha-ACT) is found which binds to the equine and human, but not the murine, alpha-subunit genes in a region between the positions of the CRE and TSE and confers cAMP responsiveness.  相似文献   

3.
4.
5.
6.
7.
The single-copy gene encoding the alpha subunit of glycoprotein hormones is expressed in the pituitaries of all mammals and in the placentas of only primates and horses. We have systematically analyzed the promoter-regulatory elements of the human and bovine alpha-subunit genes to elucidate the molecular mechanisms underlying their divergent patterns of tissue-specific expression. This analysis entailed the use of transient expression assays in a chorionic gonadotropin-secreting human choriocarcinoma cell line, protein-DNA binding assays, and expression of chimeric forms of human or bovine alpha subunit genes in transgenic mice. From the results, we conclude that placental expression of the human alpha-subunit gene requires a functional cyclic AMP response element (CRE) that is present as a tandem repeat in the promoter-regulatory region. In contrast, the promoter-regulatory region of the bovine alpha-subunit gene, as well as of the rat and mouse genes, was found to contain a single CRE homolog that differed from its human counterpart by a single nucleotide. This difference substantially reduced the binding affinity of the bovine CRE homolog for the nuclear protein that bound to the human alpha CRE and thereby rendered the bovine alpha-subunit promoter inactive in human choriocarcinoma cells. However, conversion of the bovine alpha CRE homolog to an authentic alpha CRE restored activity to the bovine alpha-subunit promoter in choriocarcinoma cells. Similarly, a human but not a bovine alpha transgene was expressed in placenta in transgenic mice. Thus, placenta-specific expression of the human alpha-subunit gene may be the consequence of the recent evolution of a functional CRE. Expression of the human alpha transgene in mouse placenta further suggests that evolution of placenta-specific trans-acting factors preceded the appearance of this element. Finally, in contrast to their divergent patterns of placental expression, both the human and bovine alpha-subunit transgenes were expressed in mouse pituitary, indicating differences in the composition of the enhancers required for pituitary- and placenta-specific expression.  相似文献   

8.
9.
Function of GATA transcription factors in hydroxyurea-induced HEL cells   总被引:4,自引:0,他引:4  
ZhanSB HeQY 《Cell research》2001,11(4):301-310
  相似文献   

10.
Expression of the glycoprotein hormone alpha-subunit gene occurs in the pituitary of all mammals but in placenta of only primates and horses. In humans, two different elements, termed upstream regulatory element (URE) and cAMP response element (CRE), are required for placenta-specific expression of the alpha-subunit gene. The URE binds a protein unique to placenta whereas the CRE binds a ubiquitous protein. Comparative analysis of the promoter-regulatory region of the alpha-subunit gene from a number of mammals indicates that a functional URE has been retained and suggests the potential for placenta-specific expression. Indirect evidence also indicates that the URE-binding protein has been conserved, even in placenta from mammals that fail to express the alpha-subunit gene. Lack of expression of the alpha-subunit gene in placenta of rodents and cattle can be traced to a single nucleotide change that renders the CRE-like sequence of these genes incapable of binding the protein that confers responsiveness to cAMP. In contrast, although expression of the alpha-subunit gene occurs in horse placenta, the promoter-regulatory region lacks a functional CRE but appears to retain a functional URE. This suggests that either a different accessory element and cognate protein interacts with the horse URE to provide placenta-specific expression or that a completely different set of regulatory elements is required for placenta-specific expression in horses.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Expression of the human chorionic gonadotropin (hCG)-alpha gene in placental trophoblasts is markedly stimulated by cAMP, a property preserved in a reporter plasmid containing its cAMP response elements (CREs) linked to the chloramphenicol acetyltransferase coding sequence (CRE alpha CAT). In search of a potential physiologic regulator of hCG gene expression via cAMP, we found that JEG-3 syncytial trophoblast cells have specific binding sites for vasoactive intestinal peptide (VIP) with dissociation constant of 1 nM. VIP maximally increased the transient expression of CRE alpha CAT and the expression of endogenous hCG-alpha mRNA in JEG-3 cells by 4- and 9-fold, respectively. Exposure of JEG-3 cells to 30 nM VIP increased cAMP levels 60-fold after 10-30 min, but cAMP rapidly declined thereafter. As a consequence of this desensitization, the effect of VIP on stimulation of both CRE alpha CAT and endogenous hCG-alpha and hCG-beta mRNA levels more closely resembled that of forskolin or 8-br-cAMP at time points much less than 24 h. Moreover, transient exposure to 8-br-cAMP was much less effective than 24 h of continuous incubation on CRE alpha CAT activity. We conclude that VIP rapidly increases cAMP content and activates hCG-alpha gene expression in JEG-3 cells, but sustained elevations in cAMP are necessary for maximal accumulation of this CRE-regulated gene product.  相似文献   

18.
19.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号