首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of the env gp85-coding domain from two avian sarcoma and leukosis retrovirus isolates was determined to identify host range and antigenic determinants. The predicted amino acid sequence of gp85 from a subgroup D virus isolate of the Schmidt-Ruppin strain of Rous sarcoma virus was compared with the previously reported sequences of subgroup A, B, C, and E avian sarcoma and leukosis retroviruses. Subgroup D viruses are closely related to the subgroup B viruses but have an extended host range that includes the ability to penetrate certain mammalian cells. There are 27 amino acid differences shared between the subgroup D sequence and three subgroup B sequences. At 16 of these sites, the subgroup D sequence is identical to the sequence of one or more of the other subgroup viruses (A, C, and E). The remaining 11 sites are specific to subgroup D and show some clustering in the two large variable regions that are thought to be major determinants of host range. Biological analysis of recombinant viruses containing a dominant selectable marker confirmed the role of the gp85-coding domain in determining the host range of the subgroup D virus in the infection of mammalian cells. We also compared the sequence of the gp85-coding domain from two subgroup A viruses, Rous-associated virus type 1 and a subgroup A virus of the Schmidt-Ruppin strain of Rous sarcoma virus. The comparison revealed 24 nonconservative amino acid changes, of which 6 result in changes in potential glycosylation sites. The positions of 10 amino acid differences are coincident with the positions of 10 differences found between two subgroup B virus env gene sequences. These 10 sites identify seven domains in the sequence which may constitute determinants of type-specific antigenicity. Using a molecular recombinant, we demonstrated that type-specific neutralization of two subgroup A viruses was associated with the gp85-coding domain of the virus.  相似文献   

2.
We isolated a field strain of avian hemangioma retrovirus (AHV) which induces a cytopathic effect (CPE) on cultured avian and mammalian cells shortly after infection. The kinetics of cell killing were dependent on the multiplicity of infection. The CPE on avian and mammalian cells was independent of virus replication, because UV-irradiated virus led to cell death as well. Biochemical and genetic experiments indicated that AHV env gene products were responsible for the CPE. Partially purified AHV envelope glycoproteins (gp85), but not those of the Rous sarcoma virus Prague C strain, induced a CPE. Rous-associated virus type 1, in which the env region was replaced by the AHV gp85 region, induced a CPE on avian and mammalian cultured cells. Therefore, we suggest that CPE is induced by AHV via interaction between viral gp85 and the cell membrane. This mode of CPE is unique among avian sarcoma-leukemia viruses.  相似文献   

3.
Virus envelope markers in mammalian tropism of avian RNA tumor viruses.   总被引:7,自引:7,他引:0  
Pseudotypes of vesicular stomatitis virus were prepared with avian sarcoma viruses and avian leukemia viruses representing five different subgroups. These pseudotypes display a host range restricted to that of the avian tumor virus when assayed on avian cells and are neutralized by subgroup-specific antisera. The efficiency of penetration of mammalian cells was assayed by using these vesicular stomatitis virus pseudotypes. Pseudotypes of avian tumor viruses belonging to subgroup D and of B77 virus were able to plate on mammalian cells with a high efficiency, whereas pseudotypes of other strains were not. The efficiency of penetration of the vesicular stomatitis virus pseudotypes was 10-2-to 10-3-fold higher than the efficiency of transformation of the corresponding avian tumor virus strain assayed on mammalian cells, suggesting that there are postpenetration blocks to the expression of transformation in these cells.  相似文献   

4.
For the elucidation of the molecular basis of RSV adaptation to conditionally permissive host from the genome library of duck embryo fibroblasts, transformed by Rous sarcoma virus in 30 passages on these cells, recombinant bacteriophages that include provirus sequences, were obtained. Complete and transformation-defective proviruses were characterized, nucleotide sequences of their env-genes were compared with their counterparts the original RSV (Pr-RSV-C) and with viruses of other subgroups (A, B, D and E). The possible relation of the revealed changes in domains coding gp85 and gp37, with the changes of chicken RSV characteristics during adaptation to duck cells is discussed.  相似文献   

5.
Preparations of Rous sarcoma virus (RSV) can form an infectious viral-antibody complex with antibodies raised against the major glycoprotein, gp85, isolated from avian myeloblastosis virus and Prague-RSV subgroup C. Binding of anti-gp85 antibodies to RSV can be demonstrated by the inhibition of focus-forming activity after addition of goat anti-rabbit immunoglobulin and by a shift in density of virions treated with anti-gp85 serum. Group- rather than subgroup- specific regions of viral gp85 appear to be the site of binding for infectious complex.  相似文献   

6.
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.  相似文献   

7.
The nature of the oligosaccharide chains of the major envelope glycoprotein, gp85, from avian myeloblastosis-associated viruses has been examined for the subgroup A and subgroup B viruses replicated in fibroblasts from the same chicken embryos. Pronase-digested glycopeptides from [3H]mannose- or [3H]glucosamine-labeled viruses were analyzed by the combined techniques of gel filtration, endo-beta-N-acetylglucosaminidase digestion, and concanavalin A affinity chromatography. The gp85 protein from these two viruses, and also from another subgroup A avian leukosis virus replicated in the same cells, contained a diverse array of asparagine-linked oligosaccharides of the acidic type [(sialic acid +/- galactose-N-acetylglucosamine)2-4-(mannose)3-N-acetylglucosamine2(+/- fucose)-asparagine], hybrid type (sialic acid +/- galactose-N-acetylglucosamine-(mannose)5,4-N-acetylglucosamine2-asparagine), and neutral type [(mannose)5-9-N-acetylglucosamine2-asparagine], with the more highly branched (tri or tetraantennary or both) acidic-type structures representing the predominant class of oligosaccharide. Minor differences were observed between the gp85 of the subgroup B versus subgroup A viruses.  相似文献   

8.
The infectivity of avian RNA tumor viruses was inactivated to varying degrees by treatment with either concanavalin A (Con A) or phytohemagglutinin but not by treatment with wheat germ agglutinin. In general, leukosis viruses reacted preferentially with Con A, whereas sarcoma viruses showed more affinity for phytohemagglutinin. In a more extensive study with subgroup A of Prague Rous sarcoma virus (PR-A), the effect of inactivation by Con A could be specifically prevented by the addition of alpha-methyl-D-mannoside, alpha-methyl-D-glucoside, and N-acetyl-D-glucosamine. These sugars were also capable of eluting [3H]glucosamine-labeled material from disrupted PR-A virus, which was bound to a Con A-sepharose affinity column. A major viral glycoprotein recovered from the column had the same mobility as gp85 in polyacrylamide gel electrophoresis and could be immunoprecipitated with anti-gp85 antiserum. These results suggest that the material reacting with Con A is present on the gp85 component of the viral glycoprotein. The diversity in the reactivity of the glycoproteins of transforming and nontransforming viruses with plant lectins is discussed.  相似文献   

9.
Blood samples were collected from a local strain of chickens associated with serious tumor cases in Shandong Province.The samples were inoculated into chicken embryo fibroblast and DF-1 cells for virus isolation and identification,respectively.The inoculated cells were screened for three common chicken tumor viruses.Nine strains of avian leukosis virus subgroup J(ALV-J) were identified,and were designated LY1201‐LY1209.The env gene from the LY1201 strain was amplified and cloned.All nine resultant env clones(clones 01-09) were sequenced,and the gp85 and gp37 amino acid regions were subjected to homology analysis.Clones 01 and 03 had 10 amino acid deletions in the gp85 region compared to the other seven clones,suggesting that at least two quasispecies with obvious mutations coexist in the same field strain.Among these nine clones,three had identical gp85 and gp37 sequences,and were recognized as the dominant LY1201 quasispecies.The amino acid sequence homology of gp37 and gp85 among the nine clones was 98.5%-100.0% and 96.6%-100.0% respectively,suggesting that the gp85 region of the env gene can better display the quasispecies diversity of ALV-J than gp37.  相似文献   

10.
A new subgroup of avian leukosis virus (ALV), designated subgroup J, was identified recently. Viruses of this subgroup do not cross-interfere with viruses of the avian A, B, C, D, and E subgroups, are not neutralized by antisera raised against the other virus subgroups, and have a broader host range than the A to E subgroups. Sequence comparisons reveal that while the subgroup J envelope gene includes some regions that are related to those found in env genes of the A to E subgroups, the majority of the subgroup J gene is composed of sequences either that are more similar to those of a member (E51) of the ancient endogenous avian virus (EAV) family of proviruses or that appear unique to subgroup J viruses. These data led to the suggestion that the ALV-J env gene might have arisen by multiple recombination events between one or more endogenous and exogenous viruses. We initiated studies to investigate the origin of the subgroup J envelope gene and in particular to determine the identity of endogenous sequences that may have contributed to its generation. Here we report the identification of a novel family of avian endogenous viruses that include env coding sequences that are over 95% identical to both the gp85 and gp37 coding regions of subgroup J viruses. We call these viruses the ev/J family. We also report the isolation of ev/J-encoded cDNAs, indicating that at least some members of this family are expressed. These data support the hypothesis that the subgroup J envelope gene was acquired by recombination with expressed endogenous sequences and are consistent with acquisition of this gene by only one recombination event.  相似文献   

11.
Molecular basis of host range variation in avian retroviruses.   总被引:28,自引:21,他引:7       下载免费PDF全文
Previous genetic analysis has localized the region of the Rous sarcoma virus (RSV) env gene responsible for host range specificity to that encoding the middle one-third of gp85. To better understand the host range determinants, the relevant regions of the genomes of infectious molecular clones of the transformation-defective Prague strain of RSV, subgroup B (Pr-RSV-B) and Rous-associated virus 0 (RAV-0) (subgroup E) were sequenced and compared with the sequence of Pr-RSV-C. This comparative analysis identified two variable regions of low amino acid sequence homology flanked by highly conserved amino acid sequences. The first variable region (hr1) begins at base 5654 in the Pr-RSV-C sequence and encodes 32 amino acids. The second variable region (hr2) begins at base 5846 and encodes 27 amino acids. To test the role of the variable regions in host range specificity, we determined the sequence of this region of the env gene of NTRE-4, a recombinant virus between Pr-RSV-B and RAV-0 which exhibits an extended host range. This analysis revealed that the recombinant subgroup-encoding region of NTRE-4 is composed of 200 bases of RAV-0 sequence, including hr2, flanked by sequences which are otherwise of Pr-RSV-B origin. This study indicates that hr1 and hr2 are the domains of gp85 responsible for host range determination in avian retroviruses.  相似文献   

12.
利用PCR方法扩增出J亚群禽白血病病毒(ALV-J)AH09/2株的gp85基因全长930 bp DNA片段。经T载体克隆测序并连接到pGEX-6p-1载体上,构建了重组表达质粒pGEX-6P-1-gp85,在IPTG的诱导下进行表达。Western-blot结果分析表明,gp85融合蛋白表达产物分子量大小约61 kDa,并能与ALV-Jenv基因单抗发生特异性反应。这些结果为深入研究GP85蛋白的生物学功能及研制ALV-J检测ELISA试剂盒奠定了基础。  相似文献   

13.
Recombination between viral and cellular genes can give rise to new strains of retroviruses. For example, Rous-associated virus 61 (RAV-61) is a recombinant between the Bryan high-titer strain of Rous sarcoma virus (RSV) and normal pheasant DNA. Nucleic acid hybridization techniques were used to study the genome of RAV-61 and another RAV with subgroup F specificity (RAV-F) obtained by passage of RSV-RAV-0 in cells from a ring-necked pheasant embryo. The nucleotide sequences acquired by these two independent isolates of RAV-F that were not shared with the parental virus comprised 20 to 25% of the RAV-F genomes and were indistinguishable by nucleic acid hybridization. (In addition, RAV-F genomes had another set of nucleotide sequences that were homologous to some pheasant nucleotide sequences and also were present in the parental viruses.) A specific complementary DNA, containing only nucleotide sequences complementary to those acquired by RAV-61 through recombination, was prepared. These nucleotide sequences were pheasant derived and were not present in the genomes of reticuloendotheliosis viruses, pheasant viruses, and avian leukosis-sarcoma viruses of subgroups A, B, C, D, and E. They were partially endogenous, however, to avian DNA other than pheasant. The fraction of these nucleotide sequences present in other avian DNAs generally paralleled the genetic relatedness of these avian species to pheasants. However, there was a high degree of homology between these pheasant nucleotide sequences and related nucleotide sequences in the DNA of normal chickens as indicated by the identical melting profiles of the respective hybrids.  相似文献   

14.
Z Q Liu  C Wood  J A Levy    C Cheng-Mayer 《Journal of virology》1990,64(12):6148-6153
Human immunodeficiency virus type 1 (HIV-1) strains isolated from the central nervous system (CNS) may represent a subgroup that displays a host cell tropism different from those isolated from peripheral blood and lymph nodes. One CNS-derived isolate, HIV-1SF128A, which can be propagated efficiently in primary macrophage culture but not in any T-cell lines, was molecularly cloned and characterized. Recombinant viruses between HIV-1SF128A and the peripheral blood isolate HIV-1SF2 were generated in order to map the viral gene(s) responsible for the macrophage tropism. The env gene sequences of the two isolates are about 91.1% homologous, with variations scattered mainly in the hypervariable regions of gp120. Recombinant viruses that have acquired the HIV-1SF128A env gene display HIV-1SF128A tropism for macrophages. Furthermore, the gp120 variable domains, V1, V2, V4, and V5, the CD4-binding domain, and the gp41 fusion domain are not directly involved in determining macrophage tropism.  相似文献   

15.
Using recombinant and mutant viruses generated between two human immunodeficiency virus type 1 isolates that display differences in cell tropism and sensitivity to soluble CD4 neutralization, we show that these two properties of the virus are regulated by different mechanisms. Whereas there is an association between V3 loop conformation and a particular cellular tropism, soluble CD4 neutralization sensitivity appears to be determined by amino acid differences in the C2 domain of the envelope gp120 that modulate the stability of gp120-gp41 association. Our findings further illustrate the importance of functional interactions among different regions of the envelope gp120 in regulating the biological phenotypes of human immunodeficiency virus and suggest that additional probing of the V3 loop with monoclonal antibodies may identify specific structural features of this loop that determine cell tropism.  相似文献   

16.
Reticuloendotheliosis viruses have been shown to be causative of tumors in a variety of avian species. The major structural protein of these non-genetically transmitted viruses is demonstrated to possess antigenic determinants common to those of all known mammalian type C viruses. These findings establish a mammalian origin for this oncogenic avian retrovirus group. None of the known mammalian type C virus groups demonstrated a closer immunological relationship to avian reticuloendotheliosis viruses. These results suggest that reticuloendotheliosis viruses have been non-genetically transmitted for a long period of evolution or that these viruses may have arisen by relatively recent infection of birds with an as yet undiscovered mammalian type C retrovirus.  相似文献   

17.
Neutralization of human immunodeficiency virus type 1 (HIV-1) infection with soluble CD4 (sCD4) can be achieved over a broad range of concentrations for different virus strains. Laboratory virus strains passaged in transformed T-cell lines are typically sensitive to sCD4 neutralization, whereas primary virus isolates require over 100-fold-higher sCD4 concentrations. Using recombinant viruses generated from a laboratory strain, HIV-1NL4-3, and a primary macrophagetropic strain, HIV-1JR-FL, we mapped a region of gp120 important for determining sensitivity to sCD4 neutralization. This same region has previously been defined as important for macrophage and transformed T-cell line tropism and includes the V3 neutralization domain but does not include regions of gp120 that have been shown to be most important for CD4 binding.  相似文献   

18.
J M Gilbert  D Mason    J M White 《Journal of virology》1990,64(10):5106-5113
We investigated whether Rous sarcoma virus (RSV) infects cells through a pH-independent or a low-pH-dependent pathway. To do this, the effects of lysosomotropic agents and acid pretreatment on RSV infectivity of, and fusion with, chicken embryo fibroblasts (CEFs) were studied. High concentrations of lysosomotropic agents (ammonium chloride and monensin) did not inhibit virus infectivity: equal titers of RSV were produced in the presence and absence of these agents. Similarly, low-pH pretreatment did not inhibit RSV infectivity. In parallel experiments, lysosomotropic agents and acid pretreatment completely abolished the ability of influenza virus to infect CEFs. To monitor the fusion activity of RSV directly, the viral membrane was labeled with the fluorescent lipid probe octadecyl rhodamine at a self-quenching concentration. Upon fusion with a host cell, the probe is diluted in the cell membrane, resulting in fluorescence dequenching (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilschut, Biochemistry 23:5675-5681, 1984). In this assay, fusion of RSV with CEFs was found to occur in both a time-dependent and a strictly temperature-dependent fashion. No fusion occurred unless cells with prebound virus were warmed to temperatures greater than 20 degrees C. Fusion, but not binding, was abolished if virus was pretreated with low concentrations of glutaraldehyde. High concentrations of ammonium chloride had no effect on fusion of RSV with CEFs but greatly diminished the ability of influenza virus and Semliki Forest virus to fuse with CEFs. Similarly, acid pretreatment of RSV had no effect on fusion with CEFs while markedly inhibiting fusion of both influenza and Semliki Forest viruses. Collectively, our results show that RSV fusion with and hence infection of CEFs does not require exposure of the virus to low pH. In this respect, RSV resembles another retrovirus, human immunodeficiency virus.  相似文献   

19.
应用多聚酶链反应(PCR)的方法增出ADOL-4817毒株的囊膜蛋白env基因,并克隆进大肠杆菌。经核酸序列分析证明,env基因的大小为1746bp,其中gp85和gp37mh 1554bp组成,可翻译成517个氨基酸,分子量为57.7kD。根据糖基化位点N-X-S/T的特点,发现ADOL-4817的env蛋白有15个潜在的糖基化位点。同源性分析证明,ADOL-4817的env基因与其它ALV-J的env基因序列同源性为88.8%-92.4%,而与外源性ALVs的相应序列的同源性仅为40.5%-51.4%,然而,与内源性的EAV-HP毒株的类env基因的同源性高达91.2%;另外,ADOL-4817毒株的gp37d C末端多了13个氨基酸,这些结果提示,ALV-J的env基因存在广泛的变异性,env基因可能来源于内源性和外源性ALVs的重组。  相似文献   

20.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号