首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The pathway of vitamin B-12 biosynthesis in anaerobic bacteria differs in several respects from the pathway found in aerobic or aerotolerant microorganisms. The aim of this investigation was to elucidate the formation of the 5,6-dimethylbenzimidazole part and the amide groups of vitamin B-12 in anaerobic bacteria. [15N]Ammonium chloride or L-[amido-15N]glutamine or a mixture of [15N]ammonium sulfate and [15N]glycine was added to fermentations with Eubacterium limosum. The vitamin B-12 isolated from these fermentations was methylated and degraded to cobinamide and 1,5,6-trimethylbenzimidazole. The amide groups of cobinamide were hydrolyzed and the amide nitrogen of the side chains a, b, c, d, e and g trapped as benzamide. The 15N incorporation was determined by mass spectroscopy. Thus in the experiment with [15N]ammonium chloride the benzamide and the 1,5,6-trimethylbenzimidazole contained 9.6% 15N, whereas in the experiment with L-[amido-15N]glutamine 37.5% of the molecules were 15N labeled. The 1H-NMR spectrum of 1,5,6-trimethylbenzimidazole revealed that the 15N from the ammonium salts and from glutamine was incorporated into N-3 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12. With a mixture of [15N]ammonium sulfate and [15N]glycine both nitrogens of 5,6-dimethylbenzimidazole became 15N-labeled. These experiments demonstrate that in E. limosum the amide nitrogen of glutamine is not only the precursor of the six amide groups of the corrin ring, but also of N-3 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12.  相似文献   

2.
In anaerobic microorganisms the origin of C atoms 2 and 4-7 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12 is still unknown. In order to tackle this problem we added several 14C-labeled putative precursors to Eubacterium limosum fermentations. The degradation of the isolated vitamin B-12 revealed that only D-erythrose, 14C-labeled in different positions, was efficiently incorporated into the 5,6-dimethylbenzimidazole part. The 5,6-dimethylbenzimidazole obtained from an experiment with D-[U-14C]erythrose was further degraded. It was found that C-2 was unlabeled, whereas half of the label was located in C-5 plus C-6, and the other half in C-4 plus C-7. These results demonstrate that in E. limosum D-erythrose is a precursor of C-atoms 4, 5, 6 and 7 of the 5,6-dimethylbenzimidazole part of vitamin B-12.  相似文献   

3.
Iida K  Kajiwara M 《Biochemistry》2000,39(13):3666-3670
Analysis of the (13)C nuclear magnetic resonance (NMR) spectrum of (13)C-labeled vitamin B(12) biosynthesized from D-[1-(13)C]glucose by Propionibacterium shermanii provided evidence suggesting that delta-aminolevulinic acid (ALA) incorporated in the (13)C-labeled vitamin B(12) may have been synthesized via both the Shemin pathway and the C5 pathway under anaerobic conditions in the ratio of 1 < [(ratio of ALA biosynthesis from the Shemin pathway)/(that from the C5 pathway)] < 1.8. The D-ribose moiety of vitamin B(12) was labeled with (13)C at R-1, R-3, and R-5. The aminopropanol moiety of vitamin B(12) was labeled on Pr-1 and Pr-2, but not Pr-3.  相似文献   

4.
The 5,6-dimethylbenzimidazole moiety of vitamin B12 is formed from riboflavin in aerobic and some aerotolerant bacteria. Thereby C1' of riboflavin is transformed into C2 of the vitamin B12 base. In the present publication a study on this transformation with riboflavin 2H-labeled in the 1'R or 1'S position is described. This study was undertaken in order to find out if one of the two hydrogens at C1' is transferred to C2 of 5,6-dimethylbenzimidazole. The 2H-labeled riboflavin samples were synthesized starting from unlabeled or 1-2H-labeled ribose and 3,4-dimethylaniline yielding N-beta-D-ribopyranosyl-3,4-dimethylaniline. The unlabeled riboside was reduced to N-D-ribityl-3,4-dimethylaniline with sodium cyanoborotrideuteride, the 2H-labeled riboside with sodium cyanoborohydride. The ribityl derivatives were transformed into N-D-ribityl-2-phenylazo-4,5-dimethylaniline, and condensed with barbituric acid to riboflavin. The reduction of the ribosyl compound to the ribityl derivative is only partially stereospecific. Thus the riboflavin synthesized from unlabeled ribose had a 2H ratio of 3/1 (1'R/1'S), the riboflavin obtained from D-[1-2H1]ribose of 1/3 (1'R/1'S). The 2H content in these positions was determined from the 1H-NMR spectra. These spectra showed also that 1 mol 2H/mol riboflavin was present in position 1'. The deuterated riboflavin samples were incubated under aerobic conditions with broken cell preparations of Propionibacterium shermanii. The deuterium content of the 5,6-dimethylbenzimidazole isolated was determined by mass spectrometry and by 1H NMR. These measurements revealed that the hydrogen in the pro-S position at C1' of riboflavin is retained during 5,6-dimethylbenzimidazole formation, and is thus found at C2 of this base.  相似文献   

5.
(2-Amino-5, 6-dimethylbenzimidazolyl)-cobamide (III) is transformed to (2-hydroxy-5, 6-dimethylbenzimidazolyl) cobamide (IV) by nitrous acid. Exchange of the NH2-group by hydrogen with nitrous acid/hypophosphorous acid yields vitamin B12 (I). This reaction completes a cycle vitamin B12 (I)----[carboxy(2-cyanoamino-4,5-dimethylphenyl)amino]cobamide+ ++ (II)----(2-amino-5,6-dimethylbenzimidazolyl)cobamide (III)----vitamin B12 (I), which allows chemical 14C-labelling of vitamin B12. In this procedure cyanogen bromide, which is necessary for the first step, was labelled with [14C] cyanide. By the following reactions a vitamin B12 was formed in which C-2 of the 5, 6-dimethylbenzimidazole moiety is labelled.  相似文献   

6.
Radioactivity from [1-14C]riboflavin was incorporated into the 5,6-dimethylbenzimidazole moiety of Vitamin B12 in the aerobes Bacillus megaterium, Nocardia rugosa and Streptomyces sp. as well as in the aerotolerant anaerobe Propionibacterium freudenreichii, but not in the anaerobe Eubacterium limosum.As recently published for E. limosum, also in the anaerobe Clostridium barkeri radioactivity from [1-14C]glycine and [2-14C]glycine was found in the 5,6-dimethylbenzimidazole moiety, but not in the corrin moiety. The addition of l-[methyl-14C]methionine to C. barkeri led to the labeling of the corrin moiety and the 5,6-dimethylbenzimidazole moiety, showing that the seven extra methyl groups in the corrin ring as well as the two methyl groups of the base part originate from this precursor.In Clostridium thermoaceticum, forming the vitamin B12 analog 5-methoxybenzimidazolylcobamide, [1-14C]glycine and [2-14C]glycine were also incorporated into the 5-methoxybenzimidazole moiety, but not into the corrin ring.In E. limosum l-[U-14C]glutamate led to the labeling of the corrin ring of vitamin B12, but not of its base moiety.There results together with data from the literature indicate that a common biosynthetic pathway might exist for the corrinoid biosynthesis in aerobic microorganisms, and in those aerotolerant anaerobes like the Propionibacteria, which form the 5,6-dimethylbenzimidazole moiety of vitamin B12 only under aerobic conditions. They also show that this pathway differs from the pathway found in anaerobic bacteria.  相似文献   

7.
D-(1,5,6-13C3)Glucose (7) has been synthesized by a six-step chemical method. D-(1,2-13C2)Mannose (1) was converted to methyl D-(1,2-13C2)mannopyranosides (2), and 2 was oxidized with Pt-C and O2 to give methyl D-(1,2-13C2)mannopyranuronides (3). After purification by anion-exchange chromatography, 3 was hydrolyzed to give D-(1,2-13C2)mannuronic acid (4), and 4 was converted to D-(5,6-13C2)mannonic acid (5) with NaBH4. Ruff degradation of 5 gave D-(4,5-13C2)arabinose (6), and 6 was converted to D-(1,5,6-13C3)glucose (7) and D-(1,5,6-13C3)mannose (8) by cyanohydrin reduction. D-(2,5,6-13C3)Glucose (9) was prepared from 8 by molybdate-catalyzed epimerization.  相似文献   

8.
The metabolism of glucose to glycogen in the liver of fasted and well-fed rats was investigated with 13C nuclear magnetic resonance spectroscopy using [1,2-(13)C2]glucose as the main substrate. The unique spectroscopic feature of this molecule is the 13C-13C homonuclear coupling leading to characteristic doublets for the C-1 and C-2 resonances of glucose and its breakdown products as long as the two 13C nuclei remain bonded together. The doublet resonances of [1,2-(13)C2]glucose thus provide an ideal marker to follow the fate of this exogenous substrate through the metabolic pathways. [1,2-(13)C2]Glucose was injected intraperitoneally into anesthetized rats and the in vivo 13C-NMR measurements of the intact animals revealed the transformation of the injected glucose into liver glycogen. Glycogen was extracted from the liver and high resolution 13C-NMR spectra were obtained before and after hydrolysis of glycogen. Intact [1,2-13C2]glucose molecules give rise to doublet resonances, natural abundance [13C]glucose molecules produce singlet resonances. From an analysis of the doublet-to-singlet intensities the following conclusions were derived. (i) In fasted rats virtually 100% of the glycosyl units in glycogen were 13C-NMR visible. In contrast, the 13C-NMR visibility of glycogen decreased to 30-40% in well-fed rats. (ii) In fed rats a minimum of 67 +/- 7% of the exogenous [1,2-(13)C2]glucose was incorporated into the liver glycogen via the direct pathway. No contribution of the indirect pathway could be detected. (iii) In fasted rats externally supplied glucose appeared to be consumed in different metabolic processes and less [1,2-(13)C2]glucose was found to be incorporated into glycogen (13 +/- 1%). However, the observation of [5,6-(13)C2]glucose in liver glycogen provided evidence for the operation of the so-called indirect pathway of glycogen synthesis. The activity of the indirect pathway was at least 9% but not more than 30% of the direct pathway. (vi) The pentose phosphate pathway was of little significance for glucose but became detectable upon injection of [1-(13)C]ribose.  相似文献   

9.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

10.
Exogenous 5-hydroxy-[2-14C]benzimidazole was transformed by Methanosarcina barkeri into 5-hydroxy-[2-14C]benzimidazolylcobamide. Thereby the endogenous biosynthesis of 5-hydroxybenzimidazole was completely blocked.Benzimidazole and 5,6-dimethylbenzimidazole were used by M. barkeri to form benzimidazolylcobamide respectively 5,6-dimethylbenzimidazolylcobamide (vitamin B12), but in these cases the endogenous biosynthesis of factor III was not completely suppressed.With [2-14C]benzimidazole it was demonstrated that this base as well as the benzimidazolylcobamide formed thereof are no precursors in the biosynthesis of 5-hydroxybenzimidazolylcobamide.Glycine instead was found to be a building block for the biosynthesis of 5-hydroxybenzimidazole, since radioactivity from [1-14C] and [2-14C]glycine was incorporated, into the base moiety of factor III, but not into its corrin moiety. With [1-13C]glycine and 13C-NMR-spectroscopy it was shown that C-1 of glycine gets C-3a of 5-hydroxybenzimidazole.[1-13C]glycine also led to a single prominent signal in the 13C-NMR-spectrum of coenzyme F420, this was assigned to C-10a.Thus C-1 of glycine was incorporated into the hydroxybenzene part of 5-hydroxybenzimidazole, whereas it was not incorporated into this part of coenzyme F420, indicating that the hydroxybenzene part of these two compounds is not formed from a common intermediate. L-[U-14C]glutamate led to the exclusive labeling of the corrin ring of factor III, showing that the corrin precursor 5-aminolevulinic acid is formed by the C-5 pathway in M. barkeri.These experiments indicate that the biosynthesis of factor III in the archaebacterium M. barkeri is similar to the corrinoid biosynthesis in the anaerobic eubacteria Eubacterium limosum, Clostridium barkeri, and Clostridium thermoaceticum.  相似文献   

11.
Malaisse WJ  Willem R 《Biochimie》2004,86(2):119-125
When liver cells from either normal or hereditarily diabetic rats are exposed to (13)C-enriched D-fructose (10 mM) and unlabelled D-glucose (also 10 mM) in the presence of D(2)O, the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose is significantly lower than that from D-[2-(13)C]fructose. This coincides with a higher generation of (13)C-enriched L-lactate and L-alanine from D-[1-(13)C]fructose, as compared to D-[2-(13)C]fructose. In absolute terms, the mean paired difference in the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose versus D-[2-(13)C]fructose is not significantly different from the mean paired difference in the production of (13)C-enriched L-lactate and L-alanine from the same precursors, with an overall mean value of 7.01 +/- 1.59 micromol (n = 8; P < 0.005). It is proposed that these findings indicate isotopic discrimination at the phosphoglucoisomerase level between (12)C and (13)C for the carbon atom in position 1 (as compared to that in position 2) of D-fructose 6-phosphate.  相似文献   

12.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

13.
In order to elucidate the biosynthesis of the base moiety of cobalamin in Salmonella typhimurium LT2, this organism was grown in the presence of [1′-14C]riboflavin. The vitamin B12 isolated was 14C-labeled. It was shown by chemical degradation that the 14C-label was exclusively localized in carbon atom 2 of the 5,6-dimethylbenzimidazole moiety. This demonstrated the precursor function of riboflavin in the biosynthesis of 5,6-dimethylbenzimidazole in S. typhimurium. Received: 25 August 1998 / Accepted: 27 October 1998  相似文献   

14.
Incorporation of synthetically prepared 1-[1-(13)C]deoxy-d-xylulose into chamomile sesquiterpenes has been achieved by injecting an aqueous solution into the anthodia of the plant. The analysis of labeling patterns and absolute (13)C abundances of the isolated sesquiterpenes bisabololoxide A (1), bisabololoxide B (2), and chamazulene (3) using quantitative (13)C NMR spectroscopy showed that 1-[1-(13)C]deoxy-d-xylulose was efficiently incorporated in all three isoprene building blocks of the sesquiterpenes. A significantly lower (13)C abundance of the labeled carbon atom in the biogenetically terminal isoprene unit confirms the mixed biosynthesis of this unit, involving both the mevalonic acid pathway and the methylerythritol phosphate pathway.  相似文献   

15.
The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed dehydration. [delta 1-13C]Trp 62-lysozyme in which Trp 62 is labeled with 90% 13C has the same chemical and enzymatic properties as the native protein. The reverted lysozyme gave a single 13C-NMR signal at 125 ppm. pH-titration of the 13C signal indicated a transition at pH 3.9 for the free enzyme. In the presence of (GlcNAc)3, the resonance signals were shifted 0.5-1 ppm upfield, and the transitions in the titration curve were observed at pH 3.9 and 6.5. Asp 52 and Glu 35 were assigned to the groups with pKas of 3.9 and 6.5, respectively. In [2-13C]AHT 62-lysozyme, which has 3-(2-amino-3-hydroxy-3H-[2-13C]indol-3-yl)alanine (AHT) at position 62, AHT 62 behaved quite differently from Trp 62 on pH-titration of the 13C-label. These results suggest that a conformational change around Trp 62 is induced upon ionization of the catalytic residue and that the structural flexibility of the side chain of this aromatic residue in the substrate binding site is closely related to the function of lysozyme.  相似文献   

16.
Labelling with stable isotopes has under-exploited potential for studies of polysaccharide endotransglycosylation in vivo. Ideally, the labelled polysaccharides should have the highest possible buoyant density. Although [13C6]glucose has previously been used as a precursor, it was unclear whether 2H would be efficiently incorporated from [2H]glucose or lost as D2O. Rose (Rosa sp.) cell-suspension cultures efficiently incorporated 13C from D-[13C6,2H7]glucose into wall polysaccharides with negligible dilution from atmospheric 12CO2. Also, approximately 70% of the 2H atoms in D-[13C6,2H7]glucose were retained during polysaccharide biosynthesis. This shows that relatively few cycles of intermediary metabolism leading to the release of D2O occurred before sugar residues were incorporated into wall polysaccharides. In agreement with these observations, isopycnic centrifugation in caesium trifluoroacetate gradients showed that the hydrated buoyant density of xyloglucan synthesised by rose cells growing on [13C6,2H7]glucose and [13C6]glucose was 3.7 and 2.6% higher, respectively, than in isotopically non-labelled cultures. Thus, [13C,2H]glucose-feeding enabled a 42% better resolution of 'heavy' from 'light' xyloglucan than [13C]glucose-feeding.  相似文献   

17.
Syntheses of the monomer building blocks used for the solid-phase synthesis of specifically 1'-13C-labeled oligoribonucleotides from the D-[1-13C]ribose is presented. Procedure has been used for the selective formation of 2'-O-silylated ribonucleosides. After 5'-O-dimethoxytritylation, the synthesis of D-[1'-13C] ribonucleoside phosphoramidites has been achieved.  相似文献   

18.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine L-[3-13C]alanine, or D,L-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of gamma-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courses showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of L-alanine and 60% of L-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine, alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% when labelled L-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled D,L-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

19.
13C-NMR spectroscopy was used as a noninvasive approach to study the metabolism of [1,3-13C]octanoate in rat liver. Using a properly adjusted surface coil a liver selection of better than 90% was achieved in the intact animal without abdominal surgery. After infusion of [1,3-13C]octanoate via the jugular vein different patterns of metabolites were observed depending on the physiological state of the rat. In the fasted animal, the major metabolites were those of the Krebs cycle while in the diabetic animal ketogenic end products were predominant. As a fatty acid of medium chain length octanoate is imported into the inner mitochondrial space without control by the carnitine acyl transferase system. Hence, the metabolic differences observed between diabetic and fasted rats result from an intramitochondrial control mechanism. The in vivo 13C-NMR results therefore support previous biochemical in vitro studies which concluded that a major control of ketone body production occurs in the inner mitochondrial space, presumably via the redox potential of the liver. As an unexpected result, 13C-NMR provides evidence for the transitory esterification of the infused 13C-labeled octanoic acid. The corresponding 13C-NMR chemical shifts are typical for glycerides.  相似文献   

20.
Within the limits of this study, it was found that 5 ppm of cobalt was adequate to give good levels of vitamin B(12). The vitamin B(12) precursor 5,6-dimethylbenzimidazole was found to be adequate at 10 ppm in the absence of aeration. In the presence of aeration, a zero level of precursor was found to be most desirable. The analysis of variance showed aeration to be highly significant, and the aeration and precursor interaction to be significant. No other significant effects were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号