首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

2.
We studied the cross-resistance to three highly toxic Bacillus sphaericus strains, IAB-59 (serotype H6), IAB-881 (serotype H3), and IAB-872 (serotype H48), of four colonies of the Culex pipiens complex resistant to B. sphaericus 2362 and 1593, both of which are serotype H5a5b strains. Two field-selected highly resistant colonies originating from India (KOCHI, 17,000-fold resistance) and France (SPHAE, 23,000-fold resistance) and a highly resistant laboratory-selected colony from California (GeoR, 36,000-fold resistance) showed strong cross-resistance to strains IAB-881 and IAB-872 but significantly weaker cross-resistance to IAB-59 (3- to 43-fold resistance). In contrast, a laboratory-selected California colony with low-level resistance (JRMM-R, 5-fold resistance) displayed similar levels of resistance (5- to 10-fold) to all of the B. sphaericus strains tested. Thus, among the mosquitocidal strains of B. sphaericus we identified a strain, IAB-59, which was toxic to several Culex colonies that were highly resistant to commercial strains 2362 and 1593. Our analysis also indicated that strain IAB-59 may possess other larvicidal factors. These results could have important implications for the development of resistance management strategies for area-wide mosquito control programs based on the use of B. sphaericus preparations.  相似文献   

3.
Two colonies of Culex quinquefasciatus Say (Diptera: Culicidae) were selected with Bacillus sphaericus strains C3-41 and IAB59 in the laboratory for 13 and 18 generations; they attained 145,000- and 48.3-fold resistance, respectively, in comparison with a susceptible laboratory colony (SLCq) and showed very high levels of cross-resistance (8500- to 145,000-fold) to B. sphaericus strains C3-41, 1593, 2297 and 2362. They were relatively susceptible to B. sphaericus strains LP1-G and 47-6B (only 0.8- to 2.8-fold tolerance), with 24.8- to 48.3-fold cross-resistance to strain IAB59. B. sphaericus-resistant mosquito colonies remained highly susceptible to B. thuringiensis israelensis, suggesting that B.t.i. would be of value in the management of B. sphaericus-resistant Cx. quinquefasciatus colonies. The demonstration of low or no cross-resistance of two selected resistant Cx. quinquefasciatus colonies to IAB59, LP1-G and 47-6B strains of B. sphaericus and the finding of a major 49 kDa protein in these strains suggest that there is likely to be another mosquitocidal factor in the three strains.  相似文献   

4.
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus.  相似文献   

5.
Summary Seven bacterial isolates from Ghana, IAB 763, IAB 769-1, IAB 769-2, IAB 774, IAB 871, IAB 872, IAB 881, are characterized as Bacillus sphaericus strains highly toxic to mosquito larvae. Most of them belong to serotype H6, except for IAB 881 and IAB 872, which belong pesrespectively to serotypes H3 and H48. Phenotypic characters of all these strains are identical to those of strains 2362 (serotype H5) and IAB 59 (serotype H6), used for comparison. Five strains out of seven produce final whole cultures and alkali-solubilized toxins, which have very high potency against Culex pipiens larvae. Their larvicidal power is similar to that of strains 2362 and IAB 59. By using polyclonal antibodies raised against 42- and 56-kDa toxic polypeptides of strain 2362, Western-blot of the alkali-solubilized toxins of these new five strains showed homologies. It is the first time that strains belonging to serotypes H3 and H48 have been found pathogenic to mosquito larvae, thus increasing to eight the number of toxic serotypes of B. sphaericus. Correspondence to: I. Thiery  相似文献   

6.
An in vitro assay system for the toxin of Bacillus sphaericus strains 1593 and 2362 has been developed utilizing cultured Culex quinquefasciatus cells. The cytotoxic activity of extracts of B. sphaericus strain 1593 did not necessarily correlate with insecticidal activity. Cytotoxicity and larvicidal activity were neutralized by immune rabbit serum prepared against crude toxin extracts as well as by serum prepared against purified toxin from strain 2362. This purified toxin was also found to be cytotoxic. Activation with mosquito larval gut homogenates enhanced cytotoxicity of both 1593 extracts and purified toxin from 2362. The activity of cytotoxic preparations against three mosquito cell lines paralleled the activity of B. sphaericus spores against larvae of these mosquito species. The results suggest the presence of a protoxin and one or more cytotoxic proteins derived from it.  相似文献   

7.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

8.
Two novel mosquitocidal bacteria, VB17 and VB24, identified as new Bacillus species were isolated from dead mosquito larvae obtained in Florida aquatic habitats. Gas chromatographic analysis of fatty acid methyl esters (GC-FAME) and 16S rRNA sequencing indicated that VB24 is closely related to Bacillus sphaericus whereas VB17 does not have a close relationship with either Bacillus thuringiensis or B. sphaericus. Both isolates were significantly more active than B. sphaericus 2362 against Aedes taeniorhynchus, Anopheles quadrimaculatus, Culex quinquefasciatus larvae, and as active as B. sphaericus 2362 against Anopheles gambiae. Interestingly, however, both were not active against Aedes aegypti larvae, indicating some level of insecticidal specificity.  相似文献   

9.
We studied the cross-resistance to three highly toxic Bacillus sphaericus strains, IAB-59 (serotype H6), IAB-881 (serotype H3), and IAB-872 (serotype H48), of four colonies of the Culex pipiens complex resistant to B. sphaericus 2362 and 1593, both of which are serotype H5a5b strains. Two field-selected highly resistant colonies originating from India (KOCHI, 17,000-fold resistance) and France (SPHAE, 23,000-fold resistance) and a highly resistant laboratory-selected colony from California (GeoR, 36,000-fold resistance) showed strong cross-resistance to strains IAB-881 and IAB-872 but significantly weaker cross-resistance to IAB-59 (3- to 43-fold resistance). In contrast, a laboratory-selected California colony with low-level resistance (JRMM-R, 5-fold resistance) displayed similar levels of resistance (5- to 10-fold) to all of the B. sphaericus strains tested. Thus, among the mosquitocidal strains of B. sphaericus we identified a strain, IAB-59, which was toxic to several Culex colonies that were highly resistant to commercial strains 2362 and 1593. Our analysis also indicated that strain IAB-59 may possess other larvicidal factors. These results could have important implications for the development of resistance management strategies for area-wide mosquito control programs based on the use of B. sphaericus preparations.  相似文献   

10.
The 2297 strain of Bacillus sphaericus produces a crystal of the Bin (binary) toxin that is approximately fourfold larger than that of strain 2362, the strain currently used in VectoLex, a commercial mosquito larvicide. Comparison of the regions downstream from the bin operon in these two strains showed that strain 2362 contained a 1.6-kb region with four orf genes not found in strain 2297. Insertion of a 1.1-kb portion of this region from strain 2362 by homologous recombination downstream from the bin operon in strain 2297 reduced Bin toxin production by 50 to 70% and toxicity to fourth-instar larvae of Culex quinquefasciatus by 68%. These results suggest that the 1.6-kb region downstream from the bin operon in B. sphaericus 2362 is responsible for the lower Bin yield and smaller crystal size characteristic of this strain.  相似文献   

11.
Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2 × 107 and 34.4 × 107 and 6 days incubation under static conditions at 30 °C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.  相似文献   

12.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

13.
Bacillus sphaericus strain 1593 and B. thuringiensis serotype H-14 were evaluated for persistence of toxicity against two species of mosquito larvae, Culex quinquefasciatus and Aedes aegypti, in a selected simulating plot in Bangkok. Both strains of bacteria demonstrated larvicidal activity towards both species of mosquito larvae. In tap water, the toxicity of B. sphaericus strain 1593 was found to be greater towards C. quinquefasciatus larvae than A. aegypti larvae, whereas the toxicity of B. thuringiensis serotype H-14 was found to be greater towards A. aegypti larvae than C. quinquefasciatus larvae. The persistence of toxicity of these two bacteria was found to be different. The lethal concentration of B. thuriengiensis H-14 against A. aegypti decreased from LC90 to below LC50 in about 15 weeks when tested in tap water. The decrease was faster in polluted water. The toxicity of B. sphaericus 1593 towards C. quinquefasciatus larvae persisted for at least 9 months in tap water and 6 months in polluted water. The multiplication of bacteria was indicated only in populations of B. sphaericus 1593 tested with C. quinquefasciatus larvae.  相似文献   

14.
The fragment containing the gene encoding the cytolytic Cyt1Ab1 protein from Bacillus thuringiensis subsp. medellin and its flanking sequences (I. Thiery, A. Delécluse, M. C. Tamayo, and S. Orduz, Appl. Environ. Microbiol. 63:468–473, 1997) was introduced into Bacillus sphaericus toxic strains 2362, 2297, and Iab872 by electroporation with the shuttle vector pMK3. Only small amounts of the protein were produced in recombinant strains 2362 and Iab872. The protein was detected in these strains only by Western blotting and immunodetection with antibody raised against Cyt1Ab1 protein. Large amounts of Cyt1Ab1 protein were produced in B. sphaericus recombinant strain 2297, and there was an additional crystal, other than that of the binary toxin, within the exosporium. The production of the Cyt1Ab1 protein in addition to the binary toxin did not increase the larvicidal activity of the B. sphaericus recombinant strain against susceptible mosquito populations of Culex pipiens or Aedes aegypti. However, it partially restored (10 to 20 times) susceptibility of the resistant mosquito populations of C. pipiens (SPHAE) and Culex quinquefasciatus (GeoR) to the binary toxin. The Cyt1Ab1 protein produced in recombinant B. thuringiensis SPL407(pcyt1Ab1) was synthesized in two types of crystal—one round and with various dense areas, surrounded by an envelope, and the other a regular cuboid crystal, very similar to that found in the B. sphaericus recombinant strain.  相似文献   

15.
Lysinibacillus sphaericus is a spore-forming bacterium used in the biological control of mosquitoes and in bioremediation. Mosquito larvae exposed to heavy metals are tolerant to concentrations above the permissible limit for industrial residual waters. In this work, we characterize 51 L. sphaericus strains for metal tolerance and larvicidal activity against Culex quinquefasciatus. Lysinibacillus sphaericus OT4b.2, OT4b.20, OT4b.25, OT4b.26 and OT4b.58 were as toxic as the spores of the reference strain 2362 against C. quinquefasciatus larvae. 19 Mosquito-pathogenic L. sphaericus strains and 6 non-pathogenic strains were able to grow in arsenate, hexavalent chromium and/or lead. 16S rRNA gene sequences and phylogenetic analyses clustered 84 % of the metal-tolerant strains in L. sphaericus group 1, which encompasses the mosquitocidal strains. The larvicidal activity of vegetative and sporulated cells and its high tolerance to arsenate, hexavalent chromium and lead indicate that L. sphaericus OT4b.26 is a strong candidate for further studies examining its potential for biological control of mosquitoes in waters contaminated with metals.  相似文献   

16.
A xylose-regulated plasmid expression system for producing high levels of recombinant proteins in Bacillus megaterium has recently been described [Appl Microbiol Biotechnol 35:594, 1991]. Using an antibiotic resistance protein as the expressed protein, we have been able to select mutant plasmids that produce increased levels of heterologous protein. The mutant plasmids show increased segregational stability and have lost the ability to be transformed into Escherichia coli. The same selection protocol has been used to isolate a mutant strain producing high levels of the Bacillus sphaericus mosquitocidal binary toxin. This strain shows toxicity to Culex quinquefasciatus larvae that is comparable to B. sphaericus 2362 and higher than a B. megaterium strain with the original expression plasmid. This approach may be generally useful for high-level regulated protein expression in B. megaterium. Received: 6 December 1996 / Accepted: 28 January 1997  相似文献   

17.
A flowable mosquito-larvicidal formulation of Bacillus sphaericus strain C3-41 has been continuously used for 8 years to control Culex quinquefasciatus larvae in Dongguan, Guangdong Province, China. This formulation had high efficacy against the target larvae during the first 6 years of treatment. However, under this high selection pressure, C. quinquefasciatus showed a significant level of resistance to C3-41 from years seven to eight. The resistance ratio of field-collected larvae at LC 50 was calculated to be 22 672-fold in comparison with the susceptible laboratory colony. Interestingly, no cross-resistance was observed to B. sphaericus strain LP1-G which had the same toxicity against both susceptible and resistant larvae, and B. thuringiensis subsp. israelensis was found to be more active to the latter than the former. After six months treatment with the B. thuringiensis subsp. israelensis formulation in the B. sphaericus resistant population area, the mosquito population recovered its susceptibility to B. sphaericus C3-41, with the resistance ratio of field-collected larvae dropping from 22 672- to 5.67-fold.  相似文献   

18.
Bacillus thuringiensis subsp.israelensis andB. sphaericus strains 2362 and 1593 were grown in media based on defatted mustard-seed meal (MSM). The meal contains 40% (w/w) protein, with glutamic acid and arginine as the major amino acids. The toxic potencies of the final bacterial powders towardsCulex pipens quinquefasciatus Say, compared with those of the respective international reference standards, were 46% forB. thuringiensis subsp.israelensis, 62% forB. sphaericus 2362 and 88% forB. sphaericus 1593 when 2% (w/v) MSM was used for growth. With 4% (w/v) MSM,B. thuringiensis subsp.israelensis grew better but had undetectable larvicidal activity, whereas theB. sphaericus strains not only grew better but gave a higher degree of sporulation and toxicity. The potencies ofB. sphaericus in medium with 4% MSM were comparable with those of international reference standards.The authors are with the Department of Life Sciences, University of Bombay, Bombay 400 098, India.  相似文献   

19.
Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC50) of Mtx-1 and Mtx-2 of 0.246 and 4.13 μg/ml, respectively. The LC50s were 0.406 to 0.430 μg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.  相似文献   

20.
Expression of a chitinase gene, chiAC, from Bacillus thuringiensis in B. sphaericus 2297 using the binary toxin promoter yielded a recombinant strain that was 4,297-fold more toxic than strain 2297 against resistant Culex quinquefasciatus. These results show that this chitinase can synergize the toxicity of the binary toxin against mosquitoes and thus may be useful in managing mosquito resistance to B. sphaericus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号