首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Activation of both PAR-1 (proteinase-activated receptor-1) and PAR-2 resulted in release of the chemokine GRO (growth-regulated oncogene)/CINC-1 (cytokine-induced neutrophil chemoattractant-1), a functional counterpart of human interleukin-8, from rat astrocytes. Here, we investigate whether the two PAR receptor subtypes can signal separately. PAR-2-induced GRO/CINC-1 release was independent of protein kinase C, phosphoinositide 3-kinase and MEK (mitogen-activated protein kinase kinase)-1/2 activation, whereas these three kinases were involved in PAR-1-induced GRO/CINC-1 release. Despite such clear differences between PAR-1 and PAR-2 signalling pathways, JNK (c-Jun N-terminal kinase) was identified in both signalling pathways to play a pivotal role. By isoform-specific loss-of-function studies using small interfering RNA against JNK1-3, we demonstrate that different JNK isoforms mediated GRO/CINC-1 secretion, when it was induced by either PAR-1 or PAR-2 activation. JNK2 and JNK3 isoforms were both activated by PAR-1 and essential for chemokine GRO/CINC-1 secretion, whereas PAR-1-mediated JNK1 activation was mainly responsible for c-Jun phosphorylation, which was not involved in GRO/CINC-1 release. In contrast, PAR-2-induced JNK1 activation, which failed to phosphorylate c-Jun, uniquely contributed to GRO/CINC-1 release. Therefore our results show for the first time that JNK-mediated chemokine GRO/CINC-1 release occurred in a JNK isoform-dependent fashion and invoked PAR subtype-specific mechanisms. Furthermore, here we demonstrate that activation of PAR-2, as well as PAR-1, rescued astrocytes from ceramide-induced apoptosis via regulating chemokine GRO/CINC-1 release. Taken together, our results suggest that PAR-1 and PAR-2 have overlapping functions, but can activate separate pathways under certain pathological conditions to rescue neural cells from cell death. This provides new functional insights into PAR/JNK signalling and the protective actions of PARs in brain.  相似文献   

2.
In previous studies, we demonstrated that allergenic house dust mite proteases are potent inducers of proinflammatory cytokines from the respiratory epithelium, although the precise mechanisms involved were unclear. In this study, we investigated whether this was achieved through activation of protease-activated receptor (PAR)-1 or -2. Pretreatment of A549 respiratory epithelial cells with the clinically important cysteine protease allergen, Der p 1, ablated subsequent PAR-1, but not PAR-2 agonist peptide-induced IL-6 and IL-8 release. HeLa cells transfected with the plasmid coding for PAR-2, in contrast to PAR-1, released significant concentration of IL-6 after exposure to Der p 1. Exposure of HeLa cells transfected with either PAR-1/enhanced yellow fusion protein or PAR-2/enhanced yellow fusion protein to Der p 1 caused receptor internalization in the latter cells only, as judged by confocal microscopy with re-expression of the receptor within 120-min postenzyme exposure. Der p 1-induced cytokine release from both A549 and transfected HeLa cells was accompanied by changes in intracellular Ca(2+) concentrations. Desensitization studies showed that Der p 1 pretreatment of the A549 cells resulted in the abolition of both trypsin- and PAR-2 agonist peptide-induced Ca(2+) release, but not that induced by subsequent exposure to either thrombin or PAR-1 agonist peptide. These data indicate for the first time that the house dust mite allergen Der p 1-induced cytokine release from respiratory epithelial cells is, in part, mediated by activation of PAR-2, but not PAR-1.  相似文献   

3.
We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.  相似文献   

4.
Thrombin exerts a number of effects on skeletal myoblasts in vitro. It stimulates proliferation and intracellular calcium mobilization and inhibits differentiation and apoptosis induced by serum deprivation in these cells. Many cellular responses to thrombin are mediated by protease-activated receptor-1 (PAR-1). Expression of PAR-1 is present in mononuclear myoblasts in vitro, but repressed when fusion occurs to form myotubes. In the current study, we used PAR-1-null mice to determine which of thrombin's effects on myoblasts are mediated by PAR-1. Thrombin inhibited fusion almost as effectively in cultures prepared from the muscle of PAR-1-null myoblasts as in cultures prepared from wild-type mice. Apoptosis was inhibited as effectively in PAR-1-null myoblasts as in wild-type myoblasts. These effects in PAR-1-null myoblasts were mediated by a secreted inhibitor of apoptosis and fusion, as demonstrated previously for normal rat myoblasts. Thrombin failed to induce an intracellular calcium response in PAR-1-null myoblast cultures, although these cells were able to mobilize intracellular calcium in response to activation of other receptors. PAR-1-null myoblasts also failed to proliferate in response to thrombin. These results demonstrate that thrombin's effects on myoblast apoptosis and fusion are not mediated by PAR-1 and that PAR-1 is the only thrombin receptor capable of inducing proliferation and calcium mobilization in neonatal mouse myoblasts.  相似文献   

5.
Thrombin, a multifunctional protein, has been found to be involved in cellular mitogenesis, tumor growth, and metastasis, in addition to its well known effects on the initiation of platelet aggregation and secretion and the conversion of fibrinogen to fibrin to form blood clots. These properties of thrombin rely on its action as a serine protease, which cleaves the N-terminal region of a 7-transmembrane G protein receptor (protease-activated receptor, PAR-1), thus exposing a tethered end hexapeptide sequence capable of activating its receptor. Little is known about its effect on genes that regulate the cell cycle. This study was undertaken to investigate the possible mechanisms by which thrombin regulates tumor cell growth in several tumor cell lines: human CHRF megakaryocyte, DU145 prostate, MDAMB231 and MCF7 breast, U3A fibrosarcoma, and 2 murine fibroblast cell lines, MEFp53(-/-) and CD STAT(-/-). We have found that thrombin under the conditions of culture employed inhibits cell growth by both up-regulation of p21(waf/cip1) and induction of caspases via its PAR-1 receptor. The increased expression of p21(waf/cip1) by thrombin was p53 independent, STAT1 dependent, and protein synthesis independent. This was associated with tyrosine phosphorylation of JAK2 and STAT1, and nuclear translocation of STAT1. Induction of apoptosis is also PAR-1-specific, STAT1-dependent, and associated with up-regulation of caspases 1, 2, and 3. Our study establishes, for the first time, a link between PAR-1 receptor activation with the STAT signal pathway, which leads to cell cycle control and apoptosis. This observation broadens our understanding of the mechanism of PAR-1 activation and its effect on cell growth, and could possibly lead to therapeutic approaches for the treatment of cancer.  相似文献   

6.
Protease-activated receptors (PARs), newlyidentified members of G protein-coupled receptors, are widelydistributed in the brain. Thrombin evokes multiple cellular responsesin a large variety of cells by activating PAR-1, -3, and -4. Incultured rat astrocytes we investigated the signaling pathway ofthrombin- and PAR-activating peptide (PAR-AP)-induced cellproliferation. Our results show that PAR activation stimulatesproliferation of astrocytes through the ERK pathway. Thrombinstimulates ERK1/2 phosphorylation in a time- andconcentration-dependent manner. This effect can be fully mimicked by aspecific PAR-1-AP but only to a small degree by PAR-3-AP and PAR-4-AP.PAR-2-AP can induce a moderate ERK1/2 activation as well.Thrombin-stimulated ERK1/2 activation is mainly mediated by PAR-1 viatwo branches: 1) the PTX-sensitive Gprotein/(-subunits)-phosphatidylinositol 3-kinase branch, and2) the Gq-PLC-(InsP3receptor)/Ca2+-PKC pathway. Thrombin- or PAR-1-AP-inducedERK activation is partially blocked by a selective EGF receptorinhibitor, AG1478. Nevertheless, transphosphorylation of EGF receptoris unlikely for ERK1/2 activation and is certainly not involved inPAR-1-induced proliferation. The metalloproteinase mechanism involvingtransactivation of the EGF receptor by released heparin-binding EGF wasexcluded. EGF receptor activation was detected by the receptorautophosphorylation site, tyrosine 1068. Our data suggest thatthrombin-induced mitogenic action in astrocytes occurs independently ofEGF receptor transphosphorylation.

  相似文献   

7.
8.
Protease-activated receptor-2 (PAR-2), a G protein-coupled receptor for trypsin and tryptase, exerts important physiological and pathological functions in multiple systems. However, unlike PAR-1, the PAR-2-mediated intracellular signal transductions are hardly known. Here, using yeast two-hybrid screening with a human brain cDNA library, we identified an interacting partner of human PAR-2, the Jun activation domain-binding protein 1 (Jab1). The interaction was confirmed by glutathione S-transferase pull-down assays in vitro, and by co-immunoprecipitation assays in vivo. Jab1 was also shown to be colocalized with PAR-2 in both transfected HEK293 cells and in normal primary human astrocytes by double immunofluorescence staining. Further experiments demonstrated that multiple intracellular domains of PAR-2 are required for the interaction with Jab1. We then showed that agonist stimulation of PAR-2 disrupted the interaction, which could be prevented by the inhibitor of receptor endocytosis phenylarsine oxide, but not by the lysosomal protease inhibitor ZPAD. Importantly, we found that activation of PAR-2 induced the redistribution of Jab1 from the plasma membrane to the cytosol, but did not influence expression of Jab1. Furthermore, Jab1 mediated PAR-2-induced c-Jun activation, which was followed by increased activation of activator protein-1. Loss-of-function studies, using Jab1 small interfering RNA, demonstrated that Jab1 knockdown blocked PAR-2-induced activator protein-1 activation. Taken together, our data demonstrate that Jab1 is an important effector that mediates a novel signal transduction pathway for PAR-2-dependent gene expression.  相似文献   

9.
The proteinase-activated thrombin receptor-1 (PAR-1) belongs to a unique family of G protein-coupled receptors activated by proteolytic cleavage. We studied the effect of PAR-1 activation in the regulation of ion transport in mouse colon in vitro. Expression of PAR-1 in mouse colon was assessed by RT-PCR and immunohistochemistry. To study the role of PAR-1 activation in chloride secretion, mouse colon was mounted in Ussing chambers. Changes in short-circuit current (Isc) were measured in tissues exposed to either thrombin, saline, the PAR-1-activating peptide TFLLR-NH2, or the inactive reverse peptide RLLFT-NH2, before electrical field stimulation (EFS). Experiments were repeated in the presence of either a PAR-1 antagonist or in PAR-1-deficient mice to assess receptor specificity. In addition, studies were conducted in the presence of chloride-free buffer or the muscarinic antagonist atropine to assess chloride dependency and the role of cholinergic neurons in the PAR-1-induced effect. PAR-1 mRNA was expressed in full-thickness specimens and mucosal scrapings of mouse colon. PAR-1 immunoreactivity was found on epithelial cells and on neurons in submucosal ganglia where it was colocalized with both VIP and neuropeptide Y. After PAR-1 activation by thrombin or TFLLR-NH2, secretory responses to EFS but not those to forskolin or carbachol were significantly reduced. The reduction in the response to EFS was not observed in the presence of the PAR-1 antagonist, in PAR-1-deficient mice, when chloride was excluded from the bathing medium, or when atropine was present. PAR-1 is expressed in submucosal ganglia in the mouse colon and its activation leads to a decrease in neurally evoked epithelial chloride secretion.  相似文献   

10.
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.  相似文献   

11.
We examined the mechanism by which protease-activated receptor (PAR)-1 is desensitized by comparing the effect of thrombin and the soluble agonist peptide SFLLRN on Ca(2+)responses in HSY-EA1 cells. Thrombin-induced increases in cytosolic Ca(2+)concentrations ([Ca(2+)](i)) returned to basal levels within 60 s, but SFLLRN generated a sustained [Ca(2+)](i)elevation. Interestingly, thrombin-desensitized cells partially retained their ability to respond to SFLLRN. We desensitized PAR-2 by pretreating cells with SLIGKV to confirm that this response was not due to PAR-2, which can recognize SFLLRN. The highly specific PAR-1 agonist peptide TFLLR also increased [Ca(2+)](i)in PAR-2-desensitized cells pretreated with thrombin. These observations indicate that thrombin disarms PAR-1 from further proteolytic activation, but leaves the receptor responsive for non-tethered ligands.  相似文献   

12.
13.
Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50–p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.  相似文献   

14.
Proteinase-activated receptor 1 (PAR-1) is a G protein-coupled receptor that is activated by thrombin and is implicated in the pathogenesis of inflammation. Although PAR-1 is expressed on immunocompetent cells within the brain such as astrocytes, little is known about its role in the pathogenesis of inflammatory brain diseases. Herein, we investigated PAR-1 regulation of brain inflammation by stimulating human astrocytic cells with thrombin or the selective PAR-1-activating peptide. Activated cells expressed significantly increased levels of IL-1 beta, inducible NO synthase, and PAR-1 mRNA. Moreover, supernatants of these same cells were neurotoxic, which was inhibited by an N-methyl-D-aspartate receptor antagonist. Striatal implantation of the PAR-1-activating peptide significantly induced brain inflammation and neurobehavioral deficits in mice compared with mice implanted with the control peptide or saline. Since HIV-related neurological disease is predicated on brain inflammation and neuronal injury, the expression of PAR-1 in HIV encephalitis (HIVE) was investigated. Immunohistochemical analysis revealed that PAR-1 and (pro)-thrombin protein expression was low in control brains, but intense immunoreactivity was observed on astrocytes in HIVE brains. Similarly, PAR-1 and thrombin mRNA levels were significantly increased in HIVE brains compared with control and multiple sclerosis brains. These data indicated that activation and up-regulation of PAR-1 probably contribute to brain inflammation and neuronal damage during HIV-1 infection, thus providing new therapeutic targets for the treatment of HIV-related neurodegeneration.  相似文献   

15.
Protease-activated receptor (PAR)-4 is a low affinity thrombin receptor with slow activation and desensitization kinetics relative to PAR-1. This study provides novel evidence that cardiomyocytes express functional PAR-4 whose signaling phenotype is distinct from PAR-1 in cardiomyocytes. AYPGKF, a modified PAR-4 agonist with increased potency at PAR-4, activates p38-mitogen-activated protein kinase but is a weak activator of phospholipase C, extracellular signal-regulated kinase, and cardiomyocyte hypertrophy; AYPGKF and thrombin, but not the PAR-1 agonist SFLLRN, activate Src. The observation that AYPGKF and thrombin activate Src in cardiomyocytes cultured from PAR-1(-/-) mice establishes that Src activation is via PAR-4 (and not PAR-1) in cardiomyocytes. Further studies implicate Src and epidermal growth factor receptor (EGFR) kinase activity in the PAR-4-dependent p38-mitogen-activated protein kinase signaling pathway. Thrombin phosphorylates EGFRs and ErbB2 via a PP1-sensitive pathway in PAR-1(-/-) cells that stably overexpress PAR-4; the Src-mediated pathway for EGFR/ErbB2 transactivation underlies the protracted phases of thrombin-dependent extracellular signal-regulated kinase activation in PAR-1(-/-) cells that overexpress PAR-4 and in cardiomyocytes. These studies identify a unique signaling phenotype for PAR-4 (relative to other cardiomyocyte G protein-coupled receptors) that is predicted to contribute to cardiac remodeling and influence the functional outcome at sites of cardiac inflammation.  相似文献   

16.
Trypsin or Tumor associated trypsin (TAT) activation of Protease-activated receptor 2 (PAR-2) promotes tumor cell proliferation in gastrointestinal cancers. The role of the trypsin/PAR-2 network in esophageal adenocarcinoma (EA) development has not yet been investigated. The aim of this study is to investigate the role of trypsin/PAR-2 activation in EA tumorogenesis and therapy. We found that esophageal adenocarcinoma cells (EACs) and Barrett’s Metaplasia (BART) expressed high levels of type 3 extra-pancreatic trypsinogen (PRSS3), a novel type of TAT. Activity of secreted trypsin was detected in cultured media from EA OE19 and OE33 cultures but not from BART culture. Surface PAR-2 expression in BART and EACs was confirmed by both flow cytometry and immunofluorescence. Trypsin induced cell proliferation (∼ 2 fold; P<0.01) in all tested cell lines at a concentration of 10 nM. Inhibition of PAR-2 activity in EACs via the PAR-2 antagonist ENMD (500 µM), anti-PAR2 antibody SAM-11 (2 µg/ml), or siRNA PAR-2 knockdown, reduced cell proliferation and increased apoptosis by up to 4 fold (P<0.01). Trypsin stimulation led to phosphorylation of ERK1/2, suggesting involvement of MAPK pathway in PAR-2 signal transduction. Inhibition of PAR-2 activation or siRNA PAR-2 knockdown in EACs prior to treatment with 5 FU reduced cell viability of EACs by an additional 30% (P<0.01) compared to chemotherapy alone. Our data suggest that extra-pancreatic trypsinogen 3 is produced by EACs and activates PAR-2 in an autocrine manner. PAR-2 activation increases cancer cell proliferation, and promotes cancer cell survival. Targeting the trypsin activated PAR-2 pathway in conjunction with current chemotherapeutic agents may be a viable therapeutic strategy in EA.  相似文献   

17.
Rezaie AR 《IUBMB life》2011,63(6):390-396
Several recent studies have demonstrated that the activation of protease-activated receptor 1 (PAR-1) by thrombin and activated protein C (APC) on cultured vascular endothelial cells elicits paradoxical proinflammatory and antiinflammatory responses, respectively. Noting that the protective intracellular signaling activity of APC requires the interaction of the protease with its receptor, endothelial protein C receptor (EPCR), we recently hypothesized that the occupancy of EPCR by protein C may also change the PAR-1-dependent signaling specificity of thrombin. In support of this hypothesis, we demonstrated that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that the occupancy of EPCR by the Gla-domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through the coupling of PAR-1 to the pertussis toxin sensitive G(i) -protein. Thus, when EPCR is bound by protein C, a PAR-1-dependent protective signaling response in cultured endothelial cells can be mediated by either thrombin or APC. This article will briefly review the mechanism by which the occupancy of EPCR by its natural ligand modulates the PAR-1-dependent signaling specificity of coagulation proteases.  相似文献   

18.
Protease-activated receptor-2 (PAR-2) is activated by trypsin-like serine proteases and can promote cell migration through an ERK1/2-dependent pathway, involving formation of a scaffolding complex at the leading edge of the cell. Previous studies also showed that expression of a dominant negative fragment of beta-arrestin-1 reduces PAR-2-stimulated internalization, ERK1/2 activation, and cell migration; however, this reagent may block association of many proteins, including beta-arrestin-2 with clathrin-coated pits. Here we investigate the role of PAR-2 in the constitutive migration of a metastatic breast cancer cell line, MDA MB-231, and use small interfering RNA to determine the contribution of each beta-arrestin to this process. We demonstrate that a trypsin-like protease secreted from MDA MB-231 cells can promote cell migration through autocrine activation of PAR-2 and this correlates with constitutive localization of PAR-2, beta-arrestin-2, and activated ERK1/2 to pseudopodia. Addition of MEK-1 inhibitors, trypsin inhibitors, a scrambled PAR-2 peptide, and silencing of beta-arrestins with small interfering RNA also reduce base-line migration of MDA MB-231 cells. In contrast, a less metastatic PAR-2 expressing breast cancer cell line does not exhibit constitutive migration, pseudopodia formation, or trypsin secretion; in these cells PAR-2 is more uniformly distributed around the cell periphery. These data demonstrate a requirement for both beta-arrestins in PAR-2-mediated motility and suggest that autocrine activation of PAR-2 by secreted proteases may contribute to the migration of metastatic tumor cells through beta-arrestin-dependent ERK1/2 activation.  相似文献   

19.
We addressed the mechanisms of restoration of cell surface proteinase-activated receptor-1 (PAR-1) by investigating thrombin-activated signaling pathways involved in PAR-1 re-expression in endothelial cells. Exposure of endothelial cells transfected with PAR-1 promoter-luciferase reporter construct to either thrombin or PAR-1 activating peptide increased the steady-state PAR-1 mRNA and reporter activity, respectively. Pretreatment of reporter-transfected endothelial cells with pertussis toxin or co-expression of a minigene encoding 11-amino acid sequence of COOH-terminal Galphai prevented the thrombin-induced increase in reporter activity. Pertussis toxin treatment also prevented thrombin-induced MAPK phosphorylation, indicating a role of Galphai in activating the downstream MAPK pathway. Expression of constitutively active Galphai2 mutant or Gbeta1gamma2 subunits increased reporter activity 3-4-fold in the absence of thrombin stimulation. Co-expression of dominant negative mutants of either Ras or MEK1 with the reporter construct inhibited the thrombin-induced PAR-1 expression, whereas constitutively active forms of either Ras or MEK1 activated PAR-1 expression in the absence of thrombin stimulation. Expression of dominant negative Src kinase or inhibitors of phosphoinositide 3-kinase also prevented the MAPK activation and PAR-1 expression. We conclude that thrombin-induced activation of PAR-1 mediates PAR-1 expression by signaling through Gi1/2 coupled to Src and phosphoinositide 3-kinase, and thereby activating the downstream Ras/MAPK cascade.  相似文献   

20.
Thrombin activates protease-activated receptor-1 (PAR-1) by cleavage of the amino terminus to unmask a tethered ligand. Although peptide analogs can activate PAR-1, we show that the functional responses mediated via PAR-1 differ between the agonists. Thrombin caused endothelial monolayer permeability and mobilized intracellular calcium with EC(50) values of 0.1 and 1.7 nm, respectively. The opposite order of activation was observed for agonist peptide (SFLLRN-CONH(2) or TFLLRNKPDK) activation. The addition of inactivated thrombin did not affect agonist peptide signaling, suggesting that the differences in activation mechanisms are intramolecular in origin. Although activation of PAR-1 or PAR-2 by agonist peptides induced calcium mobilization, only PAR-1 activation affected barrier function. Induced barrier permeability is likely to be Galpha(12/13)-mediated as chelation of Galpha(q)-mediated intracellular calcium with BAPTA-AM, pertussis toxin inhibition of Galpha(i/o), or GM6001 inhibition of matrix metalloproteinase had no effect, whereas Y-27632 inhibition of the Galpha(12/13)-mediated Rho kinase abrogated the response. Similarly, calcium mobilization is Galpha(q)-mediated and independent of Galpha(i/o) and Galpha(12/13) because pertussis toxin Y-27632 and had no effect, whereas U-73122 inhibition of phospholipase C-beta blocked the response. It is therefore likely that changes in permeability reflect Galpha(12/13) activation, and changes in calcium reflect Galpha(q) activation, implying that the pharmacological differences between agonists are likely caused by the ability of the receptor to activate Galpha(12/13) or Galpha(q). This functional selectivity was characterized quantitatively by a mathematical model describing each step leading to Rho activation and/or calcium mobilization. This model provides an estimate that peptide activation alters receptor/G protein binding to favor Galpha(q) activation over Galpha(12/13) by approximately 800-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号