首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z X Chen  W Z Yu  J H Lee  R Diao  R J Spreitzer 《Biochemistry》1991,30(36):8846-8850
Photosynthesis-deficient mutant 45-3B of the green alga Chlamydomonas reinhardtii contains a chloroplast mutation that causes valine-331 to be replaced by alanine within the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. This amino acid substitution occurs in loop 6 of the alpha/beta-barrel active site, three residues distant from catalytic lysine-334. The mutation reduces the specific activity of the enzyme and also reduces its CO2/O2 specificity factor by 42%, but the amount of holoenzyme is unaffected. In a previous study, an intragenic-suppressor mutation, named S40-9D, was selected that causes threonine-342 to be replaced by isoleucine, thereby increasing the CO2/O2 specificity of the mutant enzyme by 36%. To determine which other residues might be able to complement the original mutation, nine additional genetically independent revertants have now been analyzed. Another intragenic suppressor, represented by mutation S61-2J, causes glycine-344 to be replaced by serine. This change increases the CO2/O2 specificity of the mutant enzyme by 25%. Of the revertants recovered and analyzed, the mutant enzyme was improved only due to true reversion or by intragenic suppression mediated by substitutions at residues 342 or 344. Changes in the physical properties of the two pairs of complementing substitutions indicate that steric effects within loop 6 are responsible for the observed changes in the CO2/O2 specificity of the enzyme.  相似文献   

2.
R J Spreitzer  G Thow    G Zhu 《Plant physiology》1995,109(2):681-685
Chlamydomonas reinhardtii mutant 31-4E lacks ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) holoenzyme due to a mutation in the chloroplast rbcL gene. This mutation causes a glycine54-to-aspartate substitution within the N-terminal domain of the Rubisco large subunit. In the present study, photosynthesis-competent revertants were selected to determine whether other amino acid substitutions might complement the primary defect. Revertants were found to arise from only true reversion or either of two forms of pseudoreversion affecting residue 54. One pseudorevertant has a glycine54-to-alanine substitution that decreases the accumulation of holoenzyme, but the purified Rubisco has near-normal kinetic properties. The other pseudorevertant has a glycine54-to-valine substitution that causes an even greater decrease in holoenzyme accumulation. Rubisco purified from this strain was found to have an 83% decrease in the Vmax of carboxylation and an 18% decrease in the CO2/O2 specificity factor. These results indicate that small increases in the size of amino acid side chains can influence Rubisco assembly or stability. Even though such changes occur far from the active site, they also play a significant role in determining Rubisco catalytic efficiency.  相似文献   

3.
Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to an increase in photosynthetic CO2 fixation and agricultural productivity. By comparing 500 active-site large subunit sequences from flowering plants with that of the green alga Chlamydomonas reinhardtii, a small number of residues were found to differ in regions previously shown by mutant screening to influence CO2/O2 specificity. When directed mutagenesis and chloroplast transformation were used to change Chlamydomonas Met-42 and Cys-53 to land plant Val-42 and Ala-53 in the large subunit N-terminal domain, little or no change in Rubisco catalytic properties was observed. However, changing Chlamydomonas methyl-Cys-256, Lys-258, and Ile-265 to land plant Phe-256, Arg-258, and Val-265 at the bottom of the alpha/beta-barrel active site caused a 10% decrease in CO2/O2 specificity, largely due to an 85% decrease in carboxylation catalytic efficiency (Vmax/Km). Because land plant Rubisco enzymes have greater CO2/O2 specificity than the Chlamydomonas enzyme, this group of residues must be complemented by other residues that differ between Chlamydomonas and land plants. The Rubisco x-ray crystal structures indicate that these residues may reside in a variable loop of the nuclear-encoded small subunit, more than 20 A away from the active site.  相似文献   

4.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel of ribulose-1,5-bisphosphate carboxylase/oxygenase plays a key role in discriminating between CO2 and O2. Genetic screening in Chlamydomonas reinhardtii previously identified a loop-6 V331A substitution that decreases carboxylation and CO2/O2 specificity. Revertant selection identified T342I and G344S substitutions that restore photosynthetic growth by increasing carboxylation and specificity of the V331A enzyme. In numerous X-ray crystal structures, loop 6 is closed or open depending on the activation state of the enzyme and the presence or absence of ligands. The carboxy terminus folds over loop 6 in the closed state. To study the molecular basis for catalysis, directed mutagenesis and chloroplast transformation were used to create T342I and G344S substitutions alone. X-ray crystal structures were then solved for the V331A, V331A/T342I, T342I, and V331A/G344S enzymes, as well as for a D473E enzyme created to assess the role of the carboxy terminus in loop-6 closure. V331A disturbs a hydrophobic pocket, abolishing several van der Waals interactions. These changes are complemented by T342I and G344S, both of which alone cause decreases in CO2/O2 specificity. In the V331A/T342I revertant enzyme, Arg339 main-chain atoms are displaced. In V331A/G344S, alpha-helix 6 is shifted. D473E causes disorder of the carboxy terminus, but loop 6 remains closed. Interactions between a transition-state analogue and several residues are altered in the mutant enzymes. However, active-site Lys334 at the apex of loop 6 has a normal conformation. A variety of subtle interactions must be responsible for catalytic efficiency and CO2/O2 specificity.  相似文献   

5.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymes from different species differ with respect to carboxylation catalytic efficiency and CO2/O2 specificity, but the structural basis for these differences is not known. Whereas much is known about the chloroplast-encoded large subunit, which contains the alpha/beta-barrel active site, much less is known about the role of the nuclear-encoded small subunit in Rubisco structure and function. In particular, a loop between beta-strands A and B contains 21 or more residues in plants and green algae, but only 10 residues in prokaryotes and nongreen algae. To determine the significance of these additional residues, a mutant of the green alga Chlamydomonas reinhardtii, which lacks both small-subunit genes, was used as a host for transformation with directed-mutant genes. Although previous studies had indicated that the betaA-betaB loop was essential for holoenzyme assembly, Ala substitutions at residues conserved among land plants and algae (Arg-59, Tyr-67, Tyr-68, Asp-69, and Arg-71) failed to block assembly or eliminate function. Only the Arg-71 --> Ala substitution causes a substantial decrease in holoenzyme thermal stability. Tyr-68 --> Ala and Asp-69 --> Ala enzymes have lower K(m)(CO2) values, but these improvements are offset by decreases in carboxylation V(max) values. The Arg-71 --> Ala enzyme has a decreased carboxylation V(max) and increased K(m)(CO2) and K(m)(O2) values, which account for an observed 8% decrease in CO2/O2 specificity. Despite the fact that Arg-71 is more than 20 A from the large-subunit active site, it is apparent that the small-subunit betaA-betaB loop region can influence catalytic efficiency and CO2/O2 specificity.  相似文献   

6.
The conserved asparagine 111 of ribulose-1,5-bisphosphate carboxylase/oxygenase from the photosynthetic bacteria Rhodospirillum rubrum was identified as a candidate for a side-chain that might be involved in the carboxylase/oxygenase specificity. It was replaced by site-directed mutagenesis with aspartic acid, leucine, glutamine or glycine residues. The mutant enzymes exhibit a very low carboxylase activity compared with the wild-type enzyme. The values of Km(RuBP) and kcat for Asn111----Gly, the most active mutant, are 420 microM and 0.034 s-1, compared with 13 microM and 3.0 s-1 for wild-type. The mutation of Asn111----Gly causes a more than tenfold decrease in the CO2/O2 specificity factor, tau, tau Asn111----Gly = 0.56 and tau wild-type = 6.7. This is the first reported change in rubisco specificity by a single site-directed mutation alone and suggests a target for future protein engineering studies.  相似文献   

7.
A temperature-conditional, photosynthesis-deficient mutant of the green alga Chlamydomonas reinhardtii, previously recovered by genetic screening, results from a leucine 290 to phenylalanine (L290F) substitution in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC ). Rubisco purified from mutant cells grown at 25 degrees C has a reduction in CO(2)/O(2) specificity and is inactivated at lower temperatures than those that inactivate the wild-type enzyme. Second-site alanine 222 to threonine (A222T) or valine 262 to leucine (V262L) substitutions were previously isolated via genetic selection for photosynthetic ability at the 35 degrees C restrictive temperature. These intragenic suppressors improve the CO(2)/O(2) specificity and thermal stability of L290F Rubisco in vivo and in vitro. In the present study, directed mutagenesis and chloroplast transformation were used to create the A222T and V262L substitutions in an otherwise wild-type enzyme. Although neither substitution improves the CO(2)/O(2) specificity above the wild-type value, both improve the thermal stability of wild-type Rubisco in vitro. Based on the x-ray crystal structure of spinach Rubisco, large subunit residues 222, 262, and 290 are far from the active site. They surround a loop of residues in the nuclear-encoded small subunit. Interactions at this subunit interface may substantially contribute to the thermal stability of the Rubisco holoenzyme.  相似文献   

8.
Proximal Cys(172) and Cys(192) in the large subunit of the photosynthetic enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) are evolutionarily conserved among cyanobacteria, algae and higher plants. Mutation of Cys(172) has been shown to affect the redox properties of Rubisco in vitro and to delay the degradation of the enzyme in vivo under stress conditions. Here, we report the effect of the replacement of Cys(172) and Cys(192) by serine on the catalytic properties, thermostability and three-dimensional structure of Chlamydomonas reinhardtii Rubisco. The most striking effect of the C172S substitution was an 11% increase in the specificity factor when compared with the wild-type enzyme. The specificity factor of C192S Rubisco was not altered. The V(c) (V(max) for carboxylation) was similar to that of wild-type Rubisco in the case of the C172S enzyme, but approx. 30% lower for the C192S Rubisco. In contrast, the K(m) for CO(2) and O(2) was similar for C192S and wild-type enzymes, but distinctly higher (approximately double) for the C172S enzyme. C172S Rubisco showed a critical denaturation temperature approx. 2 degrees C lower than wild-type Rubisco and a distinctly higher denaturation rate at 55 degrees C, whereas C192S Rubisco was only slightly more sensitive to temperature denaturation than the wild-type enzyme. X-ray crystal structures reveal that the C172S mutation causes a shift of the main-chain backbone atoms of beta-strand 1 of the alpha/beta-barrel affecting a number of amino acid side chains. This may cause the exceptional catalytic features of C172S. In contrast, the C192S mutation does not produce similar structural perturbations.  相似文献   

9.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) plays a key role in discriminating between gaseous substrates CO(2) and O(2). Based on numerous x-ray crystal structures, loop 6 is either closed or open depending on the presence or absence, respectively, of substrate ligands. The carboxyl terminus folds over loop 6 in the closed conformation, prompting speculation that it may trigger or latch loop 6 closure. Because an x-ray crystal structure of tobacco Rubisco revealed that phosphate is located at a site in the open form that is occupied by the carboxyl group of Asp-473 in the closed form, it was proposed that Asp-473 may serve as the latch that holds the carboxyl terminus over loop 6. To assess the essentiality of Asp-473 in catalysis, we used directed mutagenesis and chloroplast transformation of the green alga Chlamydomonas reinhardtii to create D473A and D473E mutant enzymes. The D473A and D473E mutant strains can grow photoautotrophically, indicating that Asp-473 is not essential for catalysis. However, both substitutions caused 87% decreases in carboxylation catalytic efficiency (V(max)/K(m)) and approximately 16% decreases in CO(2)/O(2) specificity. If the carboxyl terminus is required for stabilizing loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism. Considering that substitutions at residue 473 can influence CO(2)/O(2) specificity, further study of interactions between loop 6 and the carboxyl terminus may provide clues for engineering an improved Rubisco.  相似文献   

10.
Using oligonucleotide-directed mutagenesis of the gene encoding the small subunit (rbcS) from Anacystis nidulans mutant enzymes have been generated with either Trp-54 of the small subunit replaced by a Phe residue, or with Trp-57 replaced by a Phe residue, whereas both Trp-54 and Trp-57 have been replaced by Phe residues in a double mutant. Trp-54 and Trp-57 are conserved in all amino acid sequences or the small subunit (S) that are known at present. The wild-type and mutant forms of Rubisco have all been purified to homogeneity. The wild-type enzyme, purified from Escherichia coli is indistinguishable from enzyme similarly purified from A. nidulans in subunit composition, subunit molecular mass and kinetic parameters (Vmax CO2 = 2.9 U/mg, Km CO2 = 155 microM). The single Trp mutants are indistinguishable from the wild-type enzyme by criteria (a) and (b). However, whereas, Km CO2 is also unchanged, Vmax CO2 is 2.5-fold smaller than the value for the wild-type enzyme for both mutants, demonstrating for the first time that single amino acid replacements in the non-catalytic small subunit influence the catalytic rate of the enzyme. The specificity factor tau, which measures the partitioning of the active site between the carboxylase and oxygenase reactions, was found to be invariant. Since tau is not affected by these mutations we conclude that S is an activating not a regulating subunit.  相似文献   

11.
Comparison of subunit sequences and X-ray crystal structures of ribulose-1,5-bisphosphate carboxylase/oxygenase indicates that the loop between beta-strands A and B of the small subunit is one of the most variable regions of the holoenzyme. In prokaryotes and nongreen algae, the loop contains 10 residues. In land plants and green algae, the loop is comprised of approximately 22 and 28 residues, respectively. Previous studies indicated that the longer betaA-betaB loop was required for the assembly of cyanobacterial small subunits with plant large subunits in isolated chloroplasts. In the present study, chimeric small subunits were constructed by replacing the loop of the green alga Chlamydomonas reinhardtii with the sequences of Synechococcus or spinach. When these engineered genes were transformed into a Chlamydomonas mutant that lacks small-subunit genes, photosynthesis-competent colonies were recovered, indicating that loop size is not essential for holoenzyme assembly. Whereas the Synechococcus loop causes decreases in carboxylation V(max), K(m)(O(2)), and CO(2)/O(2) specificity, the spinach loop causes complementary decreases in carboxylation V(max), K(m)(O(2)), and K(m)(CO(2)) without a change in specificity. X-ray crystal structures of the engineered proteins reveal remarkable similarity between the introduced betaA-betaB loops and the respective loops in the Synechococcus and spinach enzymes. The side chains of several large-subunit residues are altered in regions previously shown by directed mutagenesis to influence CO(2)/O(2) specificity. Differences in the catalytic properties of divergent Rubisco enzymes may arise from differences in the small-subunit betaA-betaB loop. This loop may be a worthwhile target for genetic engineering aimed at improving photosynthetic CO(2) fixation.  相似文献   

12.
By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis. This approach has not only enabled us to alter the coenzyme specificity by minimal amino acid changes but also revealed factors that control the relative affinity of the enzyme for NAD and NADP.  相似文献   

13.
The mini-hemoglobin from Cerebratulus lacteus (CerHb) belongs to a class of globins containing the polar Tyr-B10/Gln-E7 amino acid pair that normally causes low rates of O2 dissociation and ultra-high O2 affinity, which suggest O2 sensing or NO scavenging functions. CerHb, however, has high rates of O2 dissociation (kO2 = 200-600 s(-1)) and moderate O2 affinity (KO2) approximately 1 microm(-1)) as a result of a third polar amino acid in its active site, Thr-E11. When Thr-E11 is replaced by Val, kO2 decreases 1000-fold and KO2 increases 130-fold at pH 7.0, 20 degrees C. The mutation also shifts the stretching frequencies of both heme-bound and photodissociated CO, indicating marked changes of the electrostatic field at the active site. The crystal structure of Thr-E11 --> Val CerHbO2 at 1.70 A resolution is almost identical to that of the wild-type protein (root mean square deviation of 0.12 A). The dramatic functional and spectral effects of the Thr-E11 --> Val mutation are due exclusively to changes in the hydrogen bonding network in the active site. Replacing Thr-E11 with Val "frees" the Tyr-B10 hydroxyl group to rotate toward and donate a strong hydrogen bond to the heme-bound ligand, causing a selective increase in O2 affinity, a decrease of the rate coefficient for O2 dissociation, a 40 cm(-1) decrease in nuCO of heme-bound CO, and an increase in ligand migration toward more remote intermediate sites.  相似文献   

14.
Treatment with carboxypeptidase A of ribulose bisphosphate carboxylase/oxygenase (rubisco) from spinach and Chlamydomonas, but not tobacco, reduced activity by 60-70%. Further studies with the spinach enzyme indicated that only one amino acid from each of the large (valine) and small (tyrosine) subunits was removed and the loss of activity was correlated with modification of the large subunit. The modified enzyme also had a two-fold greater Km for RuBP but CO2/O2 specificity was only 5% lower and may not be significantly different. The relative rates of release of valine and tyrosine also depended on the presence or absence of RuBP or CO2 plus Mg during treatment. The results indicate that the C-terminal amino acid in the large subunit of spinach, which is not located near the active site region, plays a previously unrecognized role in determining the catalytic activity of the enzyme.  相似文献   

15.
Among the large number of plant O-methyltransferases that are involved in secondary metabolism, only a few have been enzymatically characterized, and little information is available on the structure of their substrate binding site and the mechanism which determines their substrate specificity and methylation regiospecificity. We have previously reported the isolation of two O-methyltransferases, S-adenosyl-l-methionine:(iso)eugenol O-methyltransferase (IEMT) and S-adenosyl-l-methionine:caffeic acid O-methyltransferase (COMT) from Clarkia breweri, an annual plant from California. While IEMT and COMT (which methylate eugenol/isoeugenol and caffeic acid/5-hydroxyferulic acid, respectively) share 83% identity at the amino acid level, they have distinct substrate specificity and methylation regiospecificity. We report here that seven amino acids play a critical role in discriminating between eugenol/isoeugenol and caffeic acid/5-hydroxyferulic acid. When these amino acids in IEMT were replaced by the corresponding residues of COMT, the hybrid protein showed activity only with caffeic acid/5-hydroxyferulic acid. Conversely, when these amino acids in COMT were replaced by corresponding IEMT residues, the hybrid protein had activity only with eugenol/isoeugenol. These results provide strong evidence that O-methyltransferase substrate preference could be determined by a few amino acid residues and that new OMTs with different substrate specificity could begin to evolve from an existing OMT by mutation of a few amino acids. Phylogenetic analysis confirms that C. breweri IEMT evolved recently from COMT.  相似文献   

16.
A set of amino acid side chains that confer specificity for the coenzyme NADPH and the substrate glutathione in the flavoprotein disulphide oxidoreductase, glutathione reductase, has been identified. Systematic replacement of these amino acid residues in the coenzyme-binding site switches the specificity of the enzyme from its natural strong preference for NADPH to a marked preference for NADH. The amino acids replaced all lie in a structural motif within the dinucleotide-binding domain of the protein. Since this domain is a feature common to most dehydrogenases (reductases) that use nicotinamide coenzymes, it may be that the coenzyme specificities of all such enzymes can be manipulated in this way. Similarly, amino acid residues involved in the selective recognition of trypanothione by trypanothione reductase, an enzyme related to glutathione reductase and exclusive to trypanosomatids, were identified. Suitable mutation of the corresponding residues in E. coli glutathione reductase switched its substrate specificity towards trypanothione. A better understanding of the substrate specificity of these enzymes could open up a route to the chemotherapy of trypanosomal infections.  相似文献   

17.
The localization of the 36-kD polypeptide of Chlamydomonas reinhardtii induced by photoautotrophic growth on low CO2 concentrations (0.03% in air [v/v], low CO2-grown cells) has been investigated. This polypeptide was specifically localized to the chloroplast envelope membranes isolated from low CO2-grown cells and was not present in the chloroplast envelopes isolated from high (5% CO2 in air [v/v]) CO2-grown cells. The 36-kD protein does not show carbonic anhydrase activity and was not present on the plasma membranes isolated from low CO2-grown cells. This protein may, in part, account for the different inorganic carbon uptake characteristics observed in chloroplasts isolated from high and low CO2-grown cells of C. reinhardtii.  相似文献   

18.
Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.  相似文献   

19.
A 29.5 kDa intracellular alpha-type carbonic anhydrase, designated Cah3, from the unicellular green alga Chlamydomonas reinhardtii is the first of this type discovered inside a photosynthetic eukaryote cell. We describe the cloning of a cDNA which encodes the protein. Immunoblot studies with specific antibodies raised against Cah3 demonstrate that the polypeptide is associated exclusively with the thylakoid membrane. The putative transit peptide suggests that Cah3 is directed to the thylakoid lumen, which is confirmed further by the presence of mature sized Cah3 after thermolysin treatment of intact thylakoids. Complementation of the high inorganic carbon concentration-requiring mutant, cia-3, with a subcloned cosmid containing the cah3 gene yielded transformants that grew on atmospheric levels of CO2 (0.035%) and contained an active 29.5 kDa alpha-type carbonic anhydrase. Although, cia-3 has reduced internal carbonic anhydrase activity, unexpectedly the level of Cah3 was similar to that of the wild-type, suggesting that the mutant accumulates an inactive Cah3 polypeptide. Genomic sequence analysis of the mutant revealed two amino acid changes in the transit peptide. Results from photosynthesis and chlorophyll a fluorescence parameter measurements show that the cia-3 mutant is photosynthetically impaired. Our results indicate that the carbonic anhydrase, extrinsically located within the chloroplast thylakoid lumen, is essential for growth of C.reinhardtii at ambient levels of CO2, and that at these CO2 concentrations the enzyme is required for optimal photosystem II photochemistry.  相似文献   

20.
We isolated and characterized a gene encoding phosphoribulokinase (PRK) from Synechococcus sp. PCC 7942. The isolated sequence consisted of a 999 bp open reading frame encoding 333 amino acid residues of PRK. The PRK contained a pair of cysteinyl residues corresponding to Cys16 and Cys55 of spinach PRK regulated by a ferredoxin-thioredoxin system. However, there were seventeen amino acid residues lacking between the two cysteinyl residues compared with those of the chloroplastic enzyme in higher plants. The recombinant PRK of Synechococcus sp. PCC 7942 accounted for about 6-13% of the total soluble protein in the Escherichia coli. The specific activity of the enzyme was 230 micro mol min(-1) (mg protein)(-1). The enzyme activity was completely inactivated by treatment with 5,5'-dithiobis (2-nitrobenzoic acid) (cysteinyl residue-specific oxidant) or was decreased by treatment with H(2)O(2), but was more tolerant to oxidation than that of chloroplast. The oxidized PRK was fully activated by treatment with excessive dithiothreitol. Furthermore, incubation with 3 mM ATP protected the oxidation of the enzyme by either 5,5'-dithiobis (2-nitrobenzoic acid) or H(2)O(2). These results suggest Synechococcus sp. PCC 7942 PRK can be regulated by reversible oxidation/reduction in vitro, but might be resistant to oxidative inactivation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号