首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake of [32P]phosphate into phosphatidylinositol and phosphatidate was measured in synaptosomes incubated in Krebs-Ringer bicarbonate buffer, pH7.4. The apparent dissociation constants for acetylcholine and carbamoylcholine was estimated from the increase in 32P uptake caused by these agents. These apparent constants were similar for both phosphatidylinositol and phosphatidate and were 2.7 +/- 0.5 MICROmeter for acetylcholine and 12 +/- 2 micrometer for carbamoylcholine when Ca2+ concentration was 0.75 mM. Under the same conditions the inhibition of the carbamoylcholine-induced increase in 32P uptake, caused by atropine, is consistent with atropine being a competitive inhibitor, with an apparent inhibition constant of 0.35 +/- 0.05 micrometer. The apparent constants were dependent on the Ca2+ concentration, and were greater in 2.54 mM-Ca2+. The former values for the kinetic constants are similar to the muscarinic-receptor dissociation constant, which indicates that the binding of the agonist to the receptor may be rate-limiting in this series of reactions when the Ca2+ concentration is 0.75 mM.  相似文献   

2.
3.
The phosphatidylinositol transfer protein from bovine brain has a remarkable specificity pattern with a distinct preference for phosphatidylinositol (PI) and a low affinity for phosphatidylcholine (PC). In this study we have determined the affinity of PI-transfer protein for PI relative to that for PC by measuring the binding of the fluorescent pyrene-labeled analogs of these phospholipids. From competition binding experiments it was estimated that the transfer protein has a 16-fold higher affinity for PI than for PC. This relative affinity together with the relative abundance of PI and PC, determines what proportion of the protein contains PI (e.g. 65% of the PI-transfer protein in the case of bovine brain). From measuring lipid transfer between donor vesicles consisting of equimolar amounts of PC and PI, and an excess of acceptor vesicles consisting of various ratios of PC and PI, we have observed that the relative rates of the PI-transfer protein-mediated transfer of PI and PC varies between 5 and 20. Kinetic analysis has indicated that PI-transfer protein carrying a PI molecule has different kinetic properties than the PI-transfer protein carrying a PC molecule. It will be discussed that because of the dual specificity, PI-transfer protein is ideally suited for maintaining PI levels in intracellular membranes.  相似文献   

4.
Glycolipid transfer protein from bovine brain   总被引:2,自引:0,他引:2  
Glycolipid transfer protein from bovine brain has been purified partially by ammonium sulfate precipitation, CM-52 ion-exchange, and Sephadex G-75 column chromatography. Both pyrene-labeled and tritium-labeled glucocerebrosides have been used to study the kinetics of protein-mediated transfer between donor and acceptor vesicles. Protein accelerates glucocerebroside transfer but does not accelerate phospholipid transfer. In colyophilized small sonicated vesicles (10% glucocerebroside, 90% 1-palmitoyl-2-oleoyl-phosphatidylcholine) about two-thirds of the glycolipid is transferred in 2 h and the remaining one-third does not transfer (up to 5 h). For donor and acceptor vesicles made of dipalmitoylphosphatidylcholine or 1-palmitoyl-2-oleoyl-phosphatidylcholine, glucocerebroside (10% in donors) is transferred rapidly only when both the donor and acceptor matrix phospholipids are in the liquid-crystalline state. If either donor or acceptor vesicles are in the gel state, transfer protein mediated transfer is much reduced. The amount of transfer protein bound specifically to glucocerebroside-containing vesicles is nearly equal above and below the matrix phospholipid phase transition temperature. Bound protein transfers glucocerebroside upon addition of acceptor vesicles.  相似文献   

5.
Barbiturates and diphenylhydantoin inhibit the carbamoylcholine-stimulated increase in 32P incorporation into phosphatidylinositol and phosphatidic acid, but have a relatively slight effect on the incorporation of 32P into these lipids in the absence of carbamoylcholine and no effect on 32P incorporation into phosphatidylcholine and phosphatidylethanolamine. Inhibition of the carbamoylcholine-stimulated increase was observed for pentobarbital, thiopental, phenobarbital, 5-(1,3-dimethylbutyl)-5-ethylbarbiturate, (+)- and (-)-5-ethyl-N-methyl-5-propylbarbituate and diphenylhydantoin. Similar concentrations of barbiturates and diphenylhydantoin were previously reported to inhibit the K+-stimulated Ca2+ influx, and therefore other agents that affect Ca2+ influx were tested to find whether they had any effect on 32P incorporation into these lipids. K+ (35 mM) increases 32P incorporation into phosphatidic acid, but to a smaller degree than 100 micrometer-carbamoylcholine, and its effect was inhibited by pentobarbital. Veratridine (75 micrometer) does not increase 32P incorporation into either phosphatidic acid or phosphatidylinositol, but did inhibit the carbamoylcholine-stimulated increase in 32P incorporation into phosphatidylinositol. The possible relationship between the phospholipid effect and stimulated Ca2+ influx is discussed.  相似文献   

6.
Protein kinase C(PKC) is a Ca2+- and phospholipid-dependent protein kinase which can be activated by diacylglycerol, a product of polyphosphoinositide hydrolysis. In this report, we show that the polyphosphoinositides L-alpha-phosphatidylinositol 4-monophosphate (PI 4P) and L-alpha-phosphatidylinositol 4,5-diphosphate (PI 4.5DP) can serve as phospholipid cofactors of isolated rat brain PKC. The order of potency of the phosphoinositides in the activation of PKC, PI greater than PI 4P greater than PI 4,5DP, shows a negative correlation with the degree of acidity of the phospholipid head group, whether 1 mM Ca2+ or 200 nM TPA is present in the reaction assay mixture. Although the polyphosphoinositides are by themselves weaker activators of PKC than PI, small amounts of PI 4,5DP cause a two-fold enhancement of PKC in the presence of Ca2+ and PI. While the endogenous phospholipid cofactors of PKC remain to be identified, these results suggest that the small amounts of polyphosphoinositides which are present in cell membranes may play a direct role in the activation of PKC in vivo, by serving as phospholipid cofactors of the enzyme.  相似文献   

7.
1. The labelling of guinea-pig pancreas phospholipids in vivo after intraperitoneal injection of [(32)P]orthophosphate is described. 2. Acyl-CoA synthetase activity in pancreas homogenates has been studied. There is no absolute requirement for added fatty acids, indicating an adequate supply of endogenous fatty acids in these preparations. 3. Phosphatidic acid is formed in guinea-pig pancreas preparations by two distinct routes, namely the acylation of l-3-glycerophosphate and the phosphorylation of 1,2-diglyceride. Phosphatidic acid formed by either mechanism is converted into phosphatidylinositol by guinea-pig pancreas in vitro. 4. The enzymes of pancreas that convert phosphatidic acid into phosphatidylinositol via CDP-diglyceride have been characterized. 5. Addition of bovine serum albumin is necessary in assaying certain of these enzymes.  相似文献   

8.
Properties of a specific glycolipid transfer protein from bovine brain   总被引:4,自引:0,他引:4  
A transfer protein specific for glycolipids has been isolated from bovine brain. As judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, the protein is 68% pure and has a molecular weight of 20 000. Three different assays were employed to study the protein's specificity and glycolipid binding properties. The protein transferred several different neutral glycosphingolipids and ganglioside GM1 equally well, but failed to accelerate phosphatidylcholine or sphingomyelin intervesicular movement. The protein's ability to interact with glycolipids was strongly influenced by the physical properties of the matrix phospholipid in which the glycolipids reside. Both the phase state of the phospholipid matrix and bilayer curvature affected glycolipid intervesicular transfer rates. Protein binding to phospholipid vesicles containing either tritium-labeled or pyrene-labeled glucosylceramide could not be demonstrated by density gradient centrifugation or fluorescence energy transfer measurements, respectively. A specific association of the transfer protein for pyrene-labeled glucosylceramide was found when the fluorescence emission of the pyrene excimer-to-monomer ratio was measured suggesting that a portion of the fluorescent glycolipid was being sequestered from the phospholipid vesicles and was binding to the freely soluble protein.  相似文献   

9.
The phosphatidylinositol transfer protein isolated from brain, liver, heart and platelets was found to be present in two subforms which could be distinguished on the basis of the isoelectric points. In this study we have demonstrated that the two subforms isolated from bovine brain are due to the presence of either phosphatidylinositol or phosphatidylcholine in the lipid binding site of the protein. The transfer protein accommodates one phosphatidylinositol molecule in the binding site. The binding site for the sn-2 fatty acyl chain was investigated by incorporating in the transfer protein either phosphatidylinositol or phosphatidylcholine carrying a parinaroyl-chain attached at the sn-2 position. Time-resolved fluorescence spectroscopy revealed that the sn-2 fatty acyl chains for both phospholipids in the lipid-protein complex were completely immobilized (i.e., rotational correlation times of 17.4 ns for phosphatidylcholine and 16.3 ns for phosphatidylinositol). The similarity in correlation times suggests that the sn-2 fatty acyl chains of both phospholipids are accommodated in the same hydrophobic binding site of the protein.  相似文献   

10.
We have studied the properties of the fatty acyl binding sites of the phosphatidylinositol transfer protein (PI-TP) from bovine brain, by measuring the binding and transfer of pyrenylacyl-containing phosphatidylinositol (PyrPI) species and pyrenylacyl-containing phosphatidylcholine (PyrPC) species as a function of the acyl chain length. The PyrPI species carried a pyrene-labeled acyl chain of variable length in the sn-2 position and either palmitic acid [C(16)], palmitoleic acid [C(16:1)], or stearic acid [C(18:1)] in the sn-1 position. Binding and transfer of the PI species increased in the order C(18) less than C(16) less than C(16:1), with a distinct preference for those species that carry a pyrenyloctanoyl [Pyr(8)] or a pyrenyldecanoyl [Pyr(10)] chain. The PyrPC species studied consisted of two sets of positional isomers: one set contained a pyrenylacyl chain of variable length and a C(16) chain, and the other set contained an unlabeled chain of variable length and a Pyr(10) chain. The binding and transfer experiments showed that PI-TP discriminates between positional isomers with a preference for the species with a pyrenylacyl chain in the sn-1 position. This discrimination is interpreted to indicate that separate binding sites exist for the sn-1 and sn-2 acyl chains. From the binding and transfer profiles it is apparent that the binding sites differ in their preference for a particular acyl chain length. The binding and transfer vs chain length profiles were quite similar for C(16)Pyr(x)PC and C(16)Pyr(x)PI species, suggesting that the sn-2 acyl chains of PI and PC share a common binding site in PI-TP.  相似文献   

11.
Bovine brain contains a lipid transfer protein that is specific for neutral glycosphingolipids and gangliosides but does not stimulate phospholipid or neutral lipid intermembrane transfer (Brown, R.E., Stephenson, F.A., Markello, T., Barenholz, Y. and Thompson, T.E. (1985) Chem. Phys. Lipids 38, 79-93). This report describes a new procedure for purifying glycolipid transfer protein from bovine brain as well as a characterization of the resulting protein. Chief among the newly introduced approaches are dye-ligand and fast protein cation-exchange liquid chromatography. Other modifications include increasing the overall scale of purification, incorporating a pH precipitation step and adding different proteinase inhibitors. The resulting procedure simplifies and accelerates the purification process while yielding a homogeneous protein. The purified protein has a molecular weight near 23 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chromatofocusing reveals that glycolipid transfer protein activity co-elutes with the 23 kDa protein and has an isoelectric point near pH 9.0. A similar isoelectric point is observed using denaturing isoelectric focusing conditions. The protein's amino acid composition reveals high levels of amino acids with non-polar side chains (48%). Based on the findings reported here and on previously published data, bovine brain glycolipid transfer protein has been compared to other lipid transfer proteins as well as lysosomal sphingolipid activator proteins.  相似文献   

12.
Phosphatidylinositol synthetic and intermembrane transfer activities were studied in rat in the developing whole brain and isolated cerebellum. Specific activities of CTP: phosphatidate cytidylyltransferase and CDPdiacylglycerol: inositol phosphatidyltransferase were found to have similar developmental patterns. Levels of phosphatidyltransferase seen in fetal animals (whole brain only) and neonatal (whole brain and cerebellum) were maintained through approximately postnatal day 15, peaked at day 28, and then declined to somewhat higher than fetal levels at day 60. Cytidylyltransferase activity varied from the phosphatidylinositol synthesizing enzyme in that specific activity continued to increase up to day 60. Whole brain phosphatidylinositol transfer specific activity showed a sharp peak at postnatal day 9 after which activity was maintained at or above the fetal levels to day 60. Cerebellum phosphatidylinositol transfer specific activity had a similar peak which was delayed 7–10 days compared to the whole brain. Phosphatidylinositol transfer protein was also determined immunologically: whole brain levels increased dramatically from fetal day 16 to 18 and then remained relatively constant, while cerebellum levels (measured from postnatal day 7) displayed a variable profile between days 7 and 28. The developmental pattern of CTP: phosphatidate cytidylyltransferase in rat brain is reported here for the first time.  相似文献   

13.
Phosphatidylinositol synthetic and intermembrane transfer activities were studied in rat in the developing whole brain and isolated cerebellum. Specific activities of CTP:phosphatidate cytidylyltransferase and CDPdiacylglycerol:inositol phosphatidyltransferase were found to have similar developmental patterns. Levels of phosphatidyltransferase seen in fetal animals (whole brain only) and neonatal (whole brain and cerebellum) were maintained through approximately postnatal day 15, peaked at day 28, and then declined to somewhat higher than fetal levels at day 60. Cytidylyltransferase activity varied from the phosphatidylinositol synthesizing enzyme in that specific activity continued to increase up to day 60. Whole brain phosphatidylinositol transfer specific activity showed a sharp peak at postnatal day 9 after which activity was maintained at or above the fetal levels to day 60. Cerebellum phosphatidylinositol transfer specific activity had a similar peak which was delayed 7-10 days compared to the whole brain. Phosphatidylinositol transfer protein was also determined immunologically: whole brain levels increased dramatically from fetal day 16 to 18 and then remained relatively constant, while cerebellum levels (measured from postnatal day 7) displayed a variable profile between days 7 and 28. The developmental pattern of CTP:phosphatidate cytidylyltransferase in rat brain is reported here for the first time.  相似文献   

14.
We have studied the effect of carbamoylcholine in Trypanosoma cruzi epimastigote forms prelabelled with [32P]-Pi. Suspensions of cells were incubated at 28 degrees C to measure changes in the levels of [32P]-labelled phospholipids after stimulation. The presence of this cholinergic agonist induced changes in the phosphoinositide metabolism; a shift in the levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid (PA) was observed, whereas the levels of the other glycerophospholipids were not changed. This study shows that carbamoylcholine either directly or indirectly influences changes in phosphoinositide metabolism.  相似文献   

15.
The enzyme S-adenosylmethionine (AdoMet): myelin basic protein (MBP) methyltransferase was purified 250-fold from bovine brain with an overall yield of 130%, relative to crude supernatant. The purification involves acid-base and (NH4)2SO4 precipitation, chromatography over Sephadex G-100 and DEAE-cellulose, followed by preparative isoelectric focusing. The enzyme has a pI of 5.60 +/- 0.05, and the Mr is estimated to be between 71,000 (from SDS/polyacrylamide-gel electrophoresis) and 74,500 (from gel filtration). The enzyme is stable at 37 degrees C for over 2 h, is stable frozen and does not require metal ions or reductants. The enzyme shows a high specificity for MBP and does not accept polyarginine as a substrate; F1 histone is methylated at 37% of the rate of MBP. Methylation occurs on an arginine residue in a single h.p.l.c.-resolvable peptide from the tryptic cleavage of MBP. Simple saturation kinetics are observed with respect to both substrates, with Km values of 18 microM and 32 microM for MBP and AdoMet respectively. The simplest kinetic mechanism that is consistent with the data requires ordered rapid-equilibrium binding, with AdoMet as the first substrate. The enzyme isolated in this work is different, both physically and kinetically, from the histone-specific arginine methyltransferases described by other workers. A new, simple, assay system for the methylation of MBP is described.  相似文献   

16.
A recently developed fluorimetric transfer assay (Somerharju, P., Brockerhoff, H. and Wirtz, K.W.A. (1981) Biochim. Biophys. Acta 649, 521–528) has been applied to study the substrate specificity and membrane binding of the phosphatidylinositol-transfer protein from bovine brain. The substrate specificity was investigated by measuring the rate of transfer, either directly or indirectly, for a series of phosphatidylinositol analogues which included phosphatidic acid, phosphatidylglycerol as well as three lipids obtained from yeast phosphatidylinositol by partial periodate oxidation and subsequent borohydride reduction. Phosphatidylglycerol and the oxidation products of phosphatidylinositol were transferred at about one tenth of the rate observed for phosphatidylinositol while phosphatidic acid was not transferred. It is concluded that an intact inositol moiety favours the formation of the putative transfer protein-phosphatidylinositol complex. In addition to phosphatidylinositol, the transfer protein also transfers phosphatidylcholine. In order to obtain information on the possible occurrence of two sites of interaction, vesicles consisting of either pure 1-acyl-2-parinaroylphosphatidylinositol or 1-acyl-2-parinaroylphosphatidylcholine were titrated with the protein. Binding of labeled phospholipid to the protein was represented by an increase of lipid fluorescence and found to be much more efficient for phosphatidylinositol than for phosphatidylcholine. This is interpreted to indicate that the protein contains an endogenous phosphatidylinositol molecule which can be easily replaced by exogenous phosphatidylinositol but not by phosphatidylcholine, a lipid with a lower affinity for this protein. Thus the binding sites for the two phospholipids are mutually exclusive, i.e. phosphatidylinositol and phosphatidylcholine cannot be bound to the protein simultaneously. Finally, the effect of acidic phospholipids on the transfer protein activity was studied either by varying the content of phosphatidic acid in the acceptor vesicles or by adding vesicles of pure acidic phospholipids to the normal assay system. The latter vesicles consisted of either phosphatidic acid, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol or cardiolipin. In both instances the transfer protein activity was inhibited, obviously through the enhanced association of the protein with the negatively charged vesicles. These findings strongly suggest that relatively nonspecific ionic forces rather than specific protein-phospholipid headgroup interactions contribute to the association of the phosphatidylinositol-transfer protein with membranes.  相似文献   

17.
18.
A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme.  相似文献   

19.
20.
Purification of Phosphatidylinositol (PI) kinase was attempted from bovine brain. A seven step purification protocol increased the specific activity 100×but attempts at further purification were unsuccessful. Labeling of the partially purified PI kinase with the ATP analog fluorosulfonylbenzoyl adenosine reproducibly identified three bands on polyacrylamide gel electrophoresis of 76 K, 45 K, and 29 K, one of which likely represents PI kinase. Kinetic studies showed aK m of 17 M for ATP, 0.02 mg/ml for PI and aV m of 1830 pmol/min/mg protein for ATP and 820 pmol/min/mg protein for PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号