首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized pharmacologically the hypersensitive cell death of tobacco BY-2 cells that followed treatments with Escherichia coli preparations of INF1, the major secreted elicitin of the late blight pathogen Phytophthora infestans. INF1 elicitin treatments resulted in fragmentation and 180 bp laddering of tobacco DNA as early as 3 h post-treatment. INF1 elicitin also induced rapid accumulation of H2O2 typical of oxidative burst, and the expression of defense genes such as phenylalanine ammonia-lyase (PAL) gene at 1 h and 3 h after elicitin treatment, respectively. To investigate the involvement of the oxidative burst and/or the expression of defense genes in the signal transduction pathways leading to hypersensitive cell death, we analyzed the effect of several chemical inhibitors of signal transduction pathways on the various responses. The results indicated that (a) the cell death required serine proteases, Ca2+ and protein kinases, (b) the oxidative burst was involved in Ca2+ and protein kinase mediated pathways, but elicitin-induced AOS was neither necessary nor sufficient for cell death and PAL gene expression, and (c) the signaling pathway of PAL gene expression required protein kinases. These results suggest that the three signal transduction pathways leading to cell death, oxidative burst and expression of defense genes branch in the early stages that follow elicitin recognition by tobacco cells.  相似文献   

2.
There is much interest in the transduction pathways by which avirulent pathogens or derived elicitors activate plant defense responses. However, little is known about anion channel functions in this process. The aim of this study was to reveal the contribution of anion channels in the defense response triggered in tobacco by the elicitor cryptogein. Cryptogein induced a fast nitrate (NO(3)(-)) efflux that was sensitive to anion channel blockers and regulated by phosphorylation events and Ca(2+) influx. Using a pharmacological approach, we provide evidence that NO(3)(-) efflux acts upstream of the cryptogein-induced oxidative burst and a 40-kD protein kinase whose activation seems to be controlled by the duration and intensity of anion efflux. Moreover, NO(3)(-) efflux inhibitors reduced and delayed the hypersensitive cell death triggered by cryptogein in tobacco plants. This was accompanied by a delay or a complete suppression of the induction of several defense-related genes, including hsr203J, a gene whose expression is correlated strongly with programmed cell death in plants. Our results indicate that anion channels are involved intimately in mediating defense responses and hypersensitive cell death.  相似文献   

3.
The phytotoxic air pollutant ozone spontaneously generates reactive oxygen species (ROS) in the leaf apoplast, provokes hypersensitive response-like lesions and induces defence reactions that significantly overlap with pathogen and other oxidative stress responses. Consequently, ozone has been used as a tool to unravel in planta ROS-induced plant defence and cell death mechanisms. Ozone exposure stimulates an oxidative burst in leaves of sensitive plants, resulting in the generation and accumulation of hydrogen peroxide or superoxide anions in distinct species. Accumulation of these ROS precedes the induction of cell death, and both responses co-occur spatially in the periveinal regions of the leaves. The review summarizes some of the recent results that have been obtained concerning the molecular basis of apoplastic ROS production in monocot and dicot species. Signal molecules, in particular ethylene and salicylic acid, control and potentiate the oxidative burst and subsequent cell death in its initiation and propagation phases while jasmonate leads to lesion containment. Amplification mechanisms that result in the production of excess ROS and hypersensitive cell death are discussed as major factors in ozone sensitivity of plant species and cultivars.  相似文献   

4.
The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture.

At higher quercinin concentrations (2 nM), H2O2 formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H2O2 production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as -amino-oxy-acetic acid (AOA) and CoCl2 also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.  相似文献   


5.
Previously, we have demonstrated an apoptosis-inducing activity of an acidic, H-chain-rich isoferritin secreted from primary rat hepatocytes in vitro. Because this proapoptotic property may be responsible for the growth-inhibitory and immunosuppressive effects described for certain ferritin species, we aimed to address the mechanism by which ferritin can trigger cell death. Suggesting a pivotal role for iron, iron chelation by desferrioxamine significantly abrogates ferritin-mediated apoptosis and necrosis in primary rat hepatocytes and substantially lowers the extent of protein modification by 4-hydroxynonenal (HNE)—a major lipid peroxidation (LPO) product. Furthermore, supplementing the cultures with the radical-scavenging compound trolox also provided significant protection from ferritin-mediated apoptosis. Moreover, a significant increase in micronucleated cells upon exposure to ferritin indicates that ferritin also introduces damage to DNA. Based on these observations we therefore propose that endocytosis of extracellular ferritin increases the level of free ferrous iron in the lysosomal compartment, promoting Fenton chemistry-based oxidative stress involving LPO and increased lysosomal membrane permeability. Subsequently, the release of reactive lysosomal content leads to cellular damage, in particular modification of protein and DNA induced by HNE and other reactive aldehydic LPO products. Together, these effects will trigger apoptosis and necrosis based on the upregulation of p53, increased mitochondrial membrane permeability, and proapoptotic Fas signaling as described recently. In conclusion, based on their iron-storing ability, secreted acidic isoferritins may act as soluble mediators of oxidative stress under certain physiological and pathophysiological conditions.  相似文献   

6.
7.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

8.
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.  相似文献   

9.
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.  相似文献   

10.
As much as the definition of life may be controversial, the definition of death also may prove problematic. In recent years it became apparent that the death of a living cell may follow more than one possible scenario: it may result from an externally applied physical injury (an accidental death), or it may be the outcome of activating an internal pathway for cell suicide (a programmed death). That cells can participate in their own execution may indicate that certain types of cell deaths that were previously considered to be caused by foreign agents such as pathogens or drugs may actually result from the activation of a programmed cell death pathway that is normally latent in cells. Here, we describe the activation of such a cell suicide pathway in plant cells upon the recognition of an invading pathogen. We discuss the possible use of this pathway as a defense mechanism against infection and the possibility that in many ways the use of this type of cell death in plants is functionally analogous to that used by mammalian cells in response to infection by pathogens. Dev. Genet. 21:279–289, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Covalent modification of cullins by the ubiquitin-like protein NEDD8 (neddylation) regulates protein ubiquitination by promoting the assembly of cullin-RING ligase E3 complexes. Like ubiquitination, neddylation results from an enzymatic cascade involving the sequential activity of a dedicated E1 (APPBP1/Uba3), E2 (Ubc12), and an ill-defined E3. We show that SCCRO (also known as DCUN1D1) binds to the components of the neddylation pathway (Cullin-ROC1, Ubc12, and CAND1) and augments but is not required for cullin neddylation in reactions using purified recombinant proteins. We also show that SCCRO recruits Ubc12 approximately NEDD8 to the CAND1-Cul1-ROC1 complex but that this is not sufficient to dissociate or overcome the inhibitory effects of CAND1 on cullin neddylation in purified protein assays. In contrast to findings in cellular systems where no binding is seen, we show that SCCRO and CAND1 can bind to the neddylated Cul1-ROC1 complex in assays using purified recombinant proteins. Although neddylated (not unneddylated) Cul1-ROC1 is released from CAND1 upon incubation with testis lysate from SCCRO+/+ mice, the addition of recombinant SCCRO is required to achieve the same results in lysate from SCCRO(-/-) mice. Combined, these results suggest that SCCRO is an important component of the neddylation E3 complex that functions to recruit charged E2 and is involved in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity.  相似文献   

12.
Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (-/- MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in -/- MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation.  相似文献   

13.
Lee DH  Choi HW  Hwang BK 《Plant physiology》2011,156(4):2011-2025
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.  相似文献   

14.
Gómez EB  Nugent RL  Laria S  Forsburg SL 《Genetics》2008,179(2):757-771
Schizosaccharomyces pombe Mst1 is a member of the MYST family of histone acetyltransferases and is the likely ortholog of Saccharomyces cerevisiae Esa1 and human Tip60 (KAT5). We have isolated a temperature-sensitive allele of this essential gene. mst1 cells show a pleiotropic phenotype at the restrictive temperature. They are sensitive to a variety of DNA-damaging agents and to the spindle poison thiabendazole. mst1 has an increased frequency of Rad22 repair foci, suggesting endogenous damage. Two-hybrid results show that Mst1 interacts with a number of proteins involved in chromosome integrity and centromere function, including the methyltransferase Skb1, the recombination mediator Rad22 (Sc Rad52), the chromatin assembly factor Hip1 (Sc Hir1), and the Msc1 protein related to a family of histone demethylases. mst1 mutant sensitivity to hydroxyurea suggests a defect in recovery following HU arrest. We conclude that Mst1 plays essential roles in maintenance of genome stability and recovery from DNA damage.  相似文献   

15.
Cyclin D1 is an essential mediator of apoptotic neuronal cell death.   总被引:25,自引:3,他引:22       下载免费PDF全文
Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent kinase activity is stimulated, due to an increase in cyclin D1 levels. Moreover, artificial elevation of cyclin D1 levels is sufficient to induce apoptosis, even in non-neural cell types. Cyclin D1-induced apoptosis, like neuronal apoptosis, can be inhibited by 21 kDa E1B, Bcl2 and pRb, but not by 55 kDa E1B. Most importantly, however, overexpression of the cyclin D-dependent kinase inhibitor p16INK4 protects neurons from apoptotic cell death, demonstrating that activation of endogenous cyclin D1-dependent kinases is essential during neuronal apoptosis. These data support a model in which neuronal apoptosis results from an aborted attempt to activate the cell cycle in terminally differentiated neurons.  相似文献   

16.
Interleukin (IL)-17, the founding member of the IL-17 cytokine family, is the hallmark of a novel subset of CD4+ T cells that is regulated by TGFbeta, IL-6, and IL-23. IL-17 plays an important role in promoting tissue inflammation in host defense against infection and in autoimmune diseases. Although IL-17 has been reported to regulate the expression of proinflammatory cytokines, chemokines, and matrix metalloproteinases, the signaling mechanism of IL-17 receptor has not been understood. An earlier study found that IL-17 activates NF-kappaB and MAPK pathways and requires TRAF6 to induce IL-6. However, it is unknown what molecule(s) directly associates with IL-17 receptor to initiate the signaling. We demonstrate here that IL-17 receptor family shares sequence homology in their intracellular region with Toll-IL-1 receptor (TIR) domains and with Act1, a novel adaptor previously reported as an NF-kappaB activator. MyD88 and IRAK4, downstream signaling components of TIR, are not required for IL-17 signaling. On the other hand, Act1 and IL-17 receptor directly associate likely via homotypic interaction. Deficiency of Act1 in fibroblast abrogates IL-17-induced cytokine and chemokine expression, as well as the induction of C/EBPbeta, C/EBPdelta, and IkappaBzeta. Also, absence of Act1 results in a selective defect in IL-17-induced activation of NF-kappaB pathway. These results thus indicate Act1 as a membrane-proximal adaptor of IL-17 receptor with an essential role in induction of inflammatory genes. Our study not only for the first time reveals an immediate signaling mechanism downstream of an IL-17 family receptor but also has implications in therapeutic treatment of various immune diseases.  相似文献   

17.
Bax inhibitor-1 (BI-1) is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR) that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.  相似文献   

18.
19.
Mitochondrial calcium uniporter (MCU) is a conserved Ca2+ transporter at mitochondrial in eukaryotic cells. However, the role of MCU protein in oxidative stressinduced cell death remains unclear. Here, we showed that ectopically expressed MCU is mitochondrial localized in both HeLa and primary cerebellar granule neurons (CGNs). Knockdown of endogenous MCU decreases mitochondrial Ca2+ uptake following histamine stimulation and attenuates cell death induced by oxidative stress in both HeLa cells and CGNs. We also found MCU interacts with VDAC1 and mediates VDAC1 overexpression-induced cell death in CGNs. This finding demonstrates that MCU-VDAC1 complex regulates mitochondrial Ca2+ uptake and oxidative stress-induced apoptosis, which might represent therapeutic targets for oxidative stress related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号