首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Large portions of the deforested areas in Southeast Asia have been ultimately replaced by the invasive grass Imperata cylindrica, but the dynamics of soil organic matter (SOM) during such land transitions are poorly understood. This study presents SOM dynamics in density and particle-size fractions following rainforest destruction and the subsequent establishment and persistence of Imperata grassland.

Methods

We examined soil C stock and natural 13C abundance in these fractions to depths of 100 cm. We predicted future soil C storage and evaluated C turnover rates in these fractions using a simple exponential model. Because soil texture strongly affects soil C storage, two chronosequences of soils differing in soil texture were compared (n?=?1 in each chronosequence).

Results

The clay-associated SOM increased in all soil layers (0–100 cm) along the forest-to-grassland chronosequence, whereas light-fraction SOM in the surface soil layer (0–5 cm) decreased.

Conclusions

In the surface layer, all SOM fractions exhibited rapid replacement of forest-derived C to grassland-derived C, indicating fast turnover. Meanwhile, δ13C values of the light fraction in the surface layer indicated that forest-derived charcoal and/or occluded low-density organic matter constituted unexpectedly large proportions of the light fraction. Mathematical modelling (0–50 cm) showed that grassland-derived C in the clay and silt fractions in all soil layers increased almost linearly for at least 50 years after grassland establishment. In the meantime, the forest-derived C stock in the clay fraction constituted 82 % of the total stable C pool at 0–50-cm depths even under steady-state conditions (t = ∞), indicating that residue of forest-derived SOM associated with clay largely contributed to preserving the soil C pool. Comparing soils with different soil textures, clay and silt particles in coarse-textured soil exhibited a substantially higher degree of organo-mineral interactions per unit volume of clay or silt compared to fine-textured soils.  相似文献   

2.

Background and aims

Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystem properties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems.

Methods

In Long Term and Conversion studies in North Central Kansas, USA; root biomass and length, soil carbon and nitrogen, microbial biomass, nematode and micro-arthropod communities were measured to a depth of one meter in paired perennial grassland and cropland wheat sites as well as a grassland site that had been converted to cropland using no tillage five years prior.

Results

In the Long Term Study root biomass was three to seven times greater (9.4 Mg ha?1 and 2.5 Mg ha?1 in May), and root length two times greater (52.5 km m?2 and 24.0 km m?2 in May) in perennial grassland than in cropland. Soil organic carbon and microbial biomass carbon were larger, numbers of Orbatid mites greater (2084 vs 730 mites m?2), and nematode communities more structured (Structure Index 67 vs 59) in perennial grassland versus annual cropland. Improved soil physical and biological properties in perennial grasslands were significantly correlated with larger, deeper root systems. In the Conversion Study root length and biomass, microbial biomass carbon, mite abundance and nematode community structure differed at some but not all dates and depths. Isotope analysis showed that five years after no-till conversion old perennial roots remained in soils of annual wheat fields and that all soil fractions except coarse particulate organic matter were derived from C4 plants.

Conclusions

Significant correlation between larger, longer roots in grasslands compared to annual croplands and improved soil biological, physical and chemical properties suggest that perennial roots are an important factor allowing perennial grasslands to maintain productivity and soil quality with few inputs. Perennial roots may persist and continue to influence soil properties long after conversion to annual systems.  相似文献   

3.

Background and Aims

Fenced enclosures have become an important method for re-establishing degraded grassland on the Tibetan plateau, and examination of soil seed banks may provide useful insights to understanding the effects and mechanisms of fencing enclosure on the restoration.

Methods

An investigation was conducted into the effects of enclosure for 3 years on the soil seed banks of degraded natural and sown grasslands at eight study sites. Species composition, soil seed bank density and the relationships with above-ground vegetation were analysed based on 4800 soil core samples and counting of seeds extracted from soil samples.

Results

After 3 years of fencing enclosure, soil seed banks differed between the different communities across the study sites. Species numbers and seed density in soil seed banks decreased from natural grassland to sown grassland, with most seeds occurring in the upper 5 cm soil layer. In these alpine grasslands, relatively few species produced high numbers of seeds, although their occurrence across the eight study sites was variable. Total vegetation cover increased with enclosure due to the colonization capacity of the vegetation rather than soil seed banks.

Conclusions

This study provided evidence that soil seed banks do not play an important role in the restoration of degraded alpine grassland when using fencing enclosures. Further studies conducted over longer periods are needed to address this subject.  相似文献   

4.

Background and aims

SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau.

Methods

Field investigation was carried out along the two transects with a total of 1,875 km in length and 200 km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10 cm from 0 to 40 cm.

Results

Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0–40 cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15 % was explained by MAP, pH and silt content and 4.63 % was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40 % of variation of soil δ13C.

Conclusions

It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.  相似文献   

5.

Aims

Afforestation causes important alterations in SOM content and composition that affect the soil functions and C balance. The aim of this study was to identify the mechanisms that determine the changes in SOM composition following afforestation of grasslands.

Methods

The study included 4 chronosequences and 5 paired plots comprising pastures and land afforested with Pinus radiata. The SOM was characterized by 13C CP-MAS NMR spectroscopy and differential scanning calorimetry.

Results

During the first 10–20 year after afforestation, the changes in SOM content varied from slight gains to large losses (>40 %). The analyses revealed that even SOM compounds considered resistant to decomposition were degraded during this time. The SOM gains, observed 20 year after stand establishment, were favoured by the higher recalcitrance of pine litter and possibly by soil acidification. The concentrations of most SOM compounds, particularly the stable compounds, were higher at the end of the rotation. The low degree of protection, along with the favourable climatic conditions, may also explain the rapid decomposition of SOM, including resistant compounds, in these soils. DSC analysis complemented the information about SOM composition provided by other techniques.

Conclusions

The accumulation of stable SOM compounds at the end of the rotation suggests a longer soil C turnover in these afforested soils, which may alleviate the gradual loss of SOC in intensively managed forest soils.  相似文献   

6.

Background and aims

Previous studies have demonstrated positive net primary production effects with increased nitrogen (N) and water availability in Inner Mongolian semi-arid grasslands. However, the responses of soil carbon (C) and N concentrations and soil enzyme activities as indicators of impacts of long-term N (urea) and water addition are still unclear. We tested the effect of 7 years of a N and water addition experiment on soil C, N, and specific soil-bound enzymes in a semi-arid grassland of Inner Mongolia.

Methods

We determined concentrations of soil organic carbon (SOC) and soil total nitrogen (TN) in both the 0–10 and 10–20 cm soil layers. Concentrations of labile carbon (LC) and inorganic nitrogen (nitrate and ammonium), and soil pH were measured. Additionally, soil dehydrogenase (DHA), β-glucosidase (BG) and acid and alkaline phosphomonoesterase (PME) enzyme activities were determined in the 0–10 cm soil layer.

Results

SOC concentration in the 0–10 cm soil layer showed no response to N addition or N plus water addition, but increased with water addition alone by 0.3–15.7 %. N addition significantly increased nitrate by 46.0–138.4 % and ammonium by 19.0–73.3 % in the 0–10 cm soil layer, whereas water addition did not affect them. The activities of DHA and alkaline PME enzymes, as well as soil pH, in the 0–10 cm layer decreased with N addition, however water addition alone caused these enzyme activities to increase. Unlike the surface soil (0–10 cm), the lower soil layer (10–20 cm), was responsive to N and water addition in that SOC and TN concentrations decreased with N addition and increased with water addition.

Conclusions

The accumulation of SOC and TN in N and water addition plots may be caused by the input of plant biomass exceeding SOC decomposition. Decrease in microbial activity, derived from decreased DHA and alkaline PME activities might result from suppression effects of lower pH and decreased microbial N supply. Water availability is proved to be more important than N availability for soil C and N accumulation in this semi-arid grassland.  相似文献   

7.

Aims

Soil inorganic carbon (SIC), primarily calcium carbonate, is a major reservoir of carbon in arid lands. This study was designed to test the hypothesis that carbonate might be enhanced in arid cropland, in association with soil fertility improvement via organic amendments.

Methods

We obtained two sets (65 each) of archived soil samples collected in the early and late 2000’s from three long-term experiment sites under wheat-corn cropping with various fertilization treatments in northern China. Soil organic (SOC), SIC and their Stable 13C compositions were determined over the range 0–100 cm.

Results

All sites showed an overall increase of SIC content in soil profiles over time. Particularly, fertilizations led to large SIC accumulation with a range of 101–202 g C m?2 y?1 in the 0–100 cm. Accumulation of pedogenic carbonate under fertilization varied from 60 to 179 g C m?2 y?1 in the 0–100 cm. Organic amendments significantly enhanced carbonate accumulation, in particular in the subsoil.

Conclusions

More carbon was sequestrated in the form of carbonate than as SOC in the arid cropland in northern China. Increasing SOC stock through long-term straw incorporation and manure application in the arid and semi-arid regions also enhanced carbonate accumulation in soil profiles.  相似文献   

8.
After the collapse of the Soviet Union in 1991, 12 million ha of cropland were abandoned in the steppe zone of Kazakhstan. At the same time livestock numbers crashed, leaving large areas of steppe without any grazing. We aimed to investigate, to which degree spontaneous succession on former cropland leads to the restoration of native steppe vegetation, and how this process is influenced by changing grazing patterns. We recorded biomass and vegetation characteristics as well as local soil and landscape variables in 151 quadrats of 100 m2, covering 89 plots on former cropland abandoned in the early 1990s and 62 reference plots of near-natural steppe grassland that was never ploughed. About half of the plots of each category were located in a remote region where grazing has been absent for ca. 20 years, whereas the other half was located in a region with moderate livestock grazing. While there were no differences in the diversity, structure and plant life form composition of currently grazed and un-grazed near-natural steppe grasslands, corresponding successional plots on abandoned arable land exhibited significant differences. Grazed plots on former fields showed higher species richness and a higher cover of dwarf shrubs (mostly Artemisia spec.), ruderals and perennial herbs. At the same time, immigration of typical steppe species was much more successful. Contrary, in the absence of any grazing we found species-poor swards dominated by Stipa lessingiana and Leymus ramosus exhibiting an increasing frequency of wildfires due to litter accumulation. After 15–20 years, secondary steppe grasslands still differed substantially from their near-natural references. Our results suggest that grazing is mandatory to fully restore the original near-natural steppe vegetation and the underlying processes of pyric herbivory.  相似文献   

9.

Background and aims

We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access.

Methods

15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N-access of pure stands, two-species and four-species grassland communities.

Results

Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne. This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture relatively large amounts of shallow soil 15N. Legumes fixed large amounts of N2, added and spared N for non-leguminous plants, which especially stimulated the growth of perennial ryegrass.

Conclusions

Our study showed that increased plant diversity in agricultural grasslands can have positive effects on the environment (improved N use may lead to reduced N leaching) and agricultural production (increased herbage yield). A complementary effect between legumes and non-leguminous plants and increasing plant diversity had a greater positive impact on herbage yield compared with complementary vertical soil 15N-access.  相似文献   

10.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

11.

Background and aim

Because the indigenous burrowing lagomorph plateau pika (Ochotona curzoniae) is considered to have negative ecological impacts on alpine meadow steppe grasslands of the Headwaters Region of the Yellow, Yangtze and Mekong Rivers we investigated its effects on ecosystem productivity and soil properties, and especially net ecosystem carbon flux.

Methods

We measured net ecosystem CO2 exchange (NEE) and its components gross ecosystem productivity (GEP) and ecosystem respiration (ER) at peak aboveground biomass by the chamber method with reference to plant and soil characteristics of areas of alpine meadow steppe with different densities of pika burrows.

Results

Higher burrow density decreased NEE, GEP and ER. Above-ground biomass, species number, plant cover and leaf area index decreased with increasing pika density. Higher burrow density was associated with lower soil moisture and higher soil temperature. Responses of NEE were related to changes of abiotic and biotic factors affecting its two components. NEE was positively related to soil moisture, soil ammonium nitrogen, plant cover, leaf area index and above-ground biomass but was negatively correlated with higher soil nitrate nitrogen.

Conclusion

Decrease of NEE by plateau pika may reduce the carbon sink balance of Qinghai-Tibet plateau grassland. Such effects may be influenced by grazing pressure from domestic livestock, population levels of natural predators, and climate change.  相似文献   

12.

Aims

Reintroductions of coarse woody debris (CWD) to Australia’s temperate eucalypt woodlands have been proposed to address the paucity of CWD in these landscapes. This study aimed to quantify the effects of CWD on surface soils.

Methods

Values of C, N, C:N, P, NO3 ?, NH4 +, pH and electrical conductivity (EC) were measured adjacent to, and at reference distances from CWD. Soils were measured at depths of 0–1 cm, 1–3 cm and 3–5 cm for 12 individual CWD samples of varying decay classes and diameters. A linear mixed model was used to test the effects of the presence of CWD, soil depth and CWD decay class and diameter.

Results

Significantly larger values for C, N, C:N, P, NO3 ?, EC, and significantly smaller values for pH were found adjacent to CWD. The greatest impact of CWD was on the upper most surface soil. CWD decay class and diameter had little influence on the measured soil characteristics.

Conclusion

This is the first quantitative determination of the effects of eucalypt CWD on woodland soils in Australia. The effect of added CWD is rapid, occurring after just 2 years. The results suggest that the effects are due to the structural properties of CWD.  相似文献   

13.

Aims

Evidence shows that tillage modifies soil properties, especially phosphorus (P) dynamics. Our objective was to disentangle long-term effects of P-fertilization and tillage on arbuscular mycorrhizal fungal (AMF) proliferation and community structure.

Methods

Changes in the community structure of AMF and in the density of their hyphae and spores induced by moldboard plow (MP) or no till (NT), and fertilization with 0, 17.5, or 35 kg?P?ha?1 were sought in the 0–15 cm and 15–30 cm soil layers after soybean harvest, at a long-term (17 years) experimental site in a humid continental zone of eastern Canada. The relationships among AMF, soil and plant attributes were examined.

Results

The 0–15 cm and 15–30 cm soil layers had different properties under NT, but were similar under MP, after 17 years, and MP increased soil available P levels. Phosphorus fertilization increased P levels in soil and in soybean. Treatment effects on AMF spore and hyphal density at 0–15 cm were greater than that at 15–30 cm, whereas effects on AMF community structure did not change with soil depths. At 0–15 cm, P-fertilization increased AMF spore density and reduced AMF hyphal density, and MP reduced AMF spore density. A total of eight AMF phylotypes were detected. Phosphorus fertilization reduced AMF phylotype richness and Shannon diversity index. Soil P availability increased under MP and hence the influence of P-fertilization treatments on the frequency of AMF phylotype detection varied with tillage system; it declined with P-fertilization under MP, but increased under NT.

Conclusions

Phosphorus fertilization shifts resource partitioning in AMF propagules rather than in their hyphae, and degrades the genetic diversity of AMF in soil; tillage increases soil P availability and hence aggravates the impact of P-fertilization.  相似文献   

14.

Background and aims

Leaf litter decomposes on the surface of soil in natural systems and element transfers between litter and soil are commonly found. However, how litter and soil organic matter (SOM) interact to influence decomposition rate and nitrogen (N) release remains unclear.

Methods

Leaf litter and mineral soil of top 0–5 cm from six forests were incubated separately, or together with litter on soil surface at 25 °C for 346 days. Litter N remaining and soil respiration rate were repeatedly measured during incubation. Litter carbon (C) and mass losses and mineral N concentrations in litter and soil were measured at the end of incubation.

Results

Net N transfer from soil to litter was found in all litters when incubated with soil. Litter incubated with soil lost more C than litter incubated alone after 346 days. For litters with initial C: N ratios lower than 52, net Nmin after 346 days was 100 % higher when incubated with soil than when incubated alone. Litter net Nmin rate was negatively related to initial C: N ratio when incubated with soil but not when incubated alone. Soil respiration rate and net Nmin rate did not differ between soil incubated with litter and soil incubated alone.

Conclusions

We conclude that soils may enhance litter decomposition rate by net N transfer from soil to litter. Our results together with studies on litter mixture decomposition suggest that net N transfer between decomposing organic matter with different N status may be common and may significantly influence decomposition and N release. The low net Nmin rate during litter decomposition along with the small size of litter N pool compared to soil N pool suggest that SOM rather than decomposing litter is the major contributor to plant mineral N supply.  相似文献   

15.

Aims

Understanding the effects of long-term crop management on soil organic matter (SOM) is necessary to improve the soil quality and sustainability of agroecosystems.

Method

The present 7-year long-term field experiment was conducted to evaluate the effect of integrated management systems and N fertilization on SOM fractions and carbon management index (CMI). Two integrated soil-crop system management (ISSM-1 and ISSM-2, combined with improved cultivation pattern, water management and no-tillage) were compared with a traditional farming system at three nitrogen (N) fertilization rates (0, 150 and 225 kg N ha?1).

Results

Management systems had greater effects on SOM and its fractions than did N fertilization. Compared with traditional farming practice, the integrated management systems increased soil organic carbon (SOC) by 13 % and total nitrogen (TN) by 10 % (averaged over N levels) after 7 years. Integrated management systems were more effective in increasing labile SOM fractions and CMI as compared to traditional farming practice. SOC, TN and dissolved organic matter in nitrogen increased with N fertilization rates. Nonetheless, N addition decreased other labile fractions: particulate organic matter, dissolved organic matter in carbon, microbial biomass nitrogen and potassium permanganate-oxidizable carbon.

Conclusions

We conclude that integrated management systems increased total SOM, labile fractions and CMI, effectively improved soil quality in rice-rapeseed rotations. Appropriate N fertilization (N150) resulted in higher SOC and TN. Though N application increased dissolved organic matter in nitrogen, it was prone to decrease most of the other labile SOM fractions, especially under higher N rate (N250), implying the decline of SOM quality.  相似文献   

16.

Aims

Grassland conversion to cropland (GCC) may result in loss of a large amount of soil organic carbon (SOC). However, the assessment of such loss of SOC still involves large uncertainty due to shallow sampling depth, soil bulk density estimation and spatial heterogeneity. Our objectives were to quantify changes in SOC, soil total nitrogen (STN) and C:N ratio in 0–100 cm soil profile after GCC and to clarify factors influencing the SOC change.

Methods

A nest-paired sampling design was used in six sites along a temperature gradient in Northeast China.

Results

SOC change after GCC ranged from ?17 to 0 Mg ha?1 in 0–30 cm soil layer, recommended by IPCC, across the six sites, but ranged from ?30 to 7 Mg ha?1 when considering 0–100 cm. We found a linear relationship between SOC change in 30–100 cm and that in 0–30 cm profile (ΔC30?100?=?0.35ΔC0?30, P?<?0.001), suggesting that SOC change in 0–100 cm was averagely 35 % higher than that in 0–30 cm. The change in STN showed a similar pattern to SOC, and soil C:N ratio did not change at most of sites. On the other hand, SOC loss after GCC was greater in soils with higher initial SOC content or in croplands without applying chemical fertilizers. Furthermore, SOC loss after GCC decreased with falling mean annual temperature (MAT), and even vanished in the coldest sites.

Conclusions

The magnitude of SOC loss following GCC in Northeast China is lower than the global average value, partly due to low MAT here. However, the current low SOC loss can be intensified by remarkable climate warming in this region.  相似文献   

17.

Aim

To determine, for arable land in a temperate area, the effect of tree establishment and intercropping treatments, on the distribution of roots and soil organic carbon to a depth of 1.5 m.

Methods

A poplar (Populus sp.) silvoarable agroforestry experiment including arable controls was established on arable land in lowland England in 1992. The trees were intercropped with an arable rotation or bare fallow for the first 11 years, thereafter grass was allowed to establish. Coarse and fine root distributions (to depths of up to 1.5 m and up to 5 m from the trees) were measured in 1996, 2003, and 2011. The amount and type of soil carbon to 1.5 m depth was also measured in 2011.

Results

The trees, initially surrounded by arable crops rather than fallow, had a deeper coarse root distribution with less lateral expansion. In 2011, the combined length of tree and understorey vegetation roots was greater in the agroforestry treatments than the control, at depths below 0.9 m. Between 0 and 1.5 m depth, the fine root carbon in the agroforestry treatment (2.56 t ha-1) was 79% greater than that in the control (1.43 t ha?1). Although the soil organic carbon in the top 0.6 m under the trees (161 t C ha?1) was greater than in the control (142 t C ha?1), a tendency for smaller soil carbon levels beneath the trees at lower depths, meant that there was no overall tree effect when a 1.5 m soil depth was considered. From a limited sample, there was no tree effect on the proportion of recalcitrant soil organic carbon.

Conclusions

The observed decline in soil carbon beneath the trees at soil depths greater than 60 cm, if observed elsewhere, has important implication for assessments of the role of afforestation and agroforestry in sequestering carbon.  相似文献   

18.

Background and aims

Growth and distribution of fine roots closely depend on soil resource availability and affect soil C distribution in return. Understanding of relationships between fine root distribution and soil C can help to predict the contribution of fine root turnover to soil C accumulation.

Methods

A study was conducted in a subtropical Cunninghamia lanceolata plantation to assess the fine root mass density (FRMD), fine root C density (FRCD) of different fine root groups as well as their relations with soil C.

Results

The FRMD and FRCD of short-lived roots, dead roots and herb roots peaked in the 0–10 cm soil layer and decreased with soil depth, while FRMD, FRCD of long-lived roots peaked in the 10–20 cm soil layer. Soil C was positively related to FRMD and FRCD of total fine roots (across all three soil layers), dead roots (0–10 cm) and herb roots (10–20 cm) as well as FRCD of short-lived roots (20–40 cm) (P <0.05).

Conclusions

Soil C was mainly affected by herb roots in upper soil layers and by woody plant roots in deeper soil layers.  相似文献   

19.

Background and aims

Intermittently frozen ground in winter is expected to disappear over large areas in the temperate zone due to ongoing climate warming. The lack of soil frost influences plant soil interactions and needs to be studied in more detail.

Methods

Winter soil frost was avoided by belowground heating wires in a field experiment over two subsequent winters in a temperate grassland. Soil respiration, soil nitrogen availability and plant performance (aboveground biomass, root length at two depth levels, greenness, nutrient content) were compared between “no-frost” and reference plots which underwent repeated freeze-thaw cycles in both winters.

Results

Soil respiration increased in the “no-frost” treatment during the warming phase (+291 %). N-availability in the upper 10 cm of the soil profile was not affected, possibly due to increased plant N accumulation during winter (+163 %), increased plant N concentration (+18 %) and increased biomass production (+31.5 %) in the growing season. Translocation of roots into deeper soil layers without changes in total root length in response to the “no-frost” treatment, however, may be a sign of nutrient leaching.

Conclusions

The cumulative effect on carbon cycling due to warmer soils therefore depends on the balance between increased winter carbon loss due to higher soil biotic activity and enhanced plant productivity with higher nutrient accumulation in the growing season.  相似文献   

20.

Background and aims

In the Jomoro district in Ghana, tree plantations were the first cause of deforestation in the past, drastically reducing the area occupied by primary forests. The aim of this study was to quantify soil organic carbon (SOC) losses due to a change in land use from primary forest to tree plantations (cocoa, coconut, rubber, oil palm) on the different substrates of the district. Secondary forests and mixed plantations were also included in the study.

Methods

Soils were sampled at different depths up to 100 cm along a series of chronosequences in each of the three substrates (Granite, Lower Birrimian and Tertiary Sands) present in the area.

Results

The highest SOC losses in the 0–30 cm layer were caused by the conversion of primary forests to tree plantations: cocoa ?61 % of the original SOC stock, coconut ?55 %, rubber ?35 % and oil palm 28 %, while mixed plantations and secondary forests showed a loss of 23 % and 21 % of the original SOC stock, respectively. C losses were less apparent from the entire profile (to a depth of 100 cm).

Conclusions

All conversions to tree plantations caused substantial SOC losses, comparable to the conversion of forests to agricultural systems. Secondary forests and mixed plantations were the only sustainable land uses that restricted SOC losses considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号