首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun  Jianfei  Xia  Zongwei  He  Tongxin  Dai  Weiwei  Peng  Bo  Liu  Jun  Gao  Decai  Jiang  Ping  Han  Shijie  Bai  Edith 《Plant and Soil》2017,415(1-2):435-448
Plant and Soil - Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate...  相似文献   

2.
Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD – flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1–13%; water‐use efficiency was improved by 18–63%, global warming potential (GWP of CH4 and N2O emissions) reduced by 45–90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield‐scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade‐offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales.  相似文献   

3.
秸秆还田与氮肥施用是农田生态系统中碳氮元素的两大主要补给途径,其在调控稻田甲烷(CH4)和氧化亚氮(N2O)排放以及水稻产量方面具有重要作用。以往的研究主要关注秸秆还田或氮肥施用单因素对稻田温室气体排放的影响,而双因素互作对甲烷和氧化亚氮排放的影响尚未明确。同时,在秸秆还田条件下如何进行合理的氮肥施用鲜有深入研究。本研究基于3个氮肥处理(0、180、360 kg N/hm2)和3个秸秆还田处理(0、2.25、3.75 t/hm2)进行多年水稻田间定位试验,研究结果表明:CH4季节累积排放随秸秆还田量增加而增加,与施氮量无显著正相关关系;N2O季节累积排放随施氮量增加而增加,与秸秆还田量无显著正相关关系;秸秆还田对于产量的影响具有不确定性,两年均在秸秆不还田+不施氮处理(S0N0)出现最低产量,2021与2022年最低产量分别为5740.64和4903.75 kg/hm2。2021与2022年最高产量分别在秸秆不还田+高氮(S0N2)和高量秸秆还田+高氮(S2N2)出现,分别为10938.48和10384.83 kg/hm2。同时,本研究发现在低量秸秆还田条件下,在碳足迹(CF, Carbon Footprint)方面,施氮量为251 kg N/hm2时碳足迹达到最低点,为1.01 kg C/kg;而在生态经济净收益(NEEB, Net Ecosystem Economic Benefits)方面,施氮量为294 kg N/hm2时生态经济净收益达到最高点,为11778.15 元/hm2。为协同生态经济净收益与碳排放,在低量秸秆还田(S1)下,配合251-294 kg N/hm2的施氮量为最优施肥方案。研究结果为指导稻田温室气体减排、实现稻田碳中和以及农田管理提供了理论支撑,为实现水稻的高产稳产与低碳生产科学依据。  相似文献   

4.
Coastal forested wetlands provide important ecosystem services such as carbon sequestration, nutrient retention, and flood protection, but they are also important sources of greenhouse gas emissions. Human appropriation of surface water and extensive ditching and draining of coastal plain landscapes are interacting with rising sea levels to increase the frequency and magnitude of saltwater incursion into formerly freshwater coastal wetlands. Both hydrologic change and saltwater incursion are expected to alter carbon and nutrient cycling in coastal forested wetlands. We performed a full factorial experiment in which we exposed intact soil cores from a coastal forested wetland to experimental marine salt treatments and two hydrologic treatments. We measured the resulting treatment effects on the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) over 112 days. Salinity effects were compared across four treatments to isolate the effects of increases in ionic strength from the impact of adding a terminal electron acceptor (SO42?). We compared control treatments (DI addition), to artificial saltwater (ASW, target salinity of 5 parts per thousand) and to two treatments that added sulfate alone (SO42?, at the concentration found in 5 ppt saltwater) and saltwater with the sulfate removed (ASW-SO42?, with the 5 ppt target salinity maintained by adding additional NaCl). We found that all salt treatments suppressed CO2 production, in both drought and flooded treatments. Contrary to our expectations, CH4 fluxes from our flooded cores increased between 300 and 1200% relative to controls in the ASW and ASW-SO42? treatments respectively. In the drought treatments, we saw virtually no CH4 release from any core, while artificial seawater with sulfate increased N2O fluxes by 160% above DI control. In contrast, salt and sulfate decreased N2O fluxes by 72% in our flooded treatments. Our results indicate that salinization of forested wetlands of the coastal plain may have important climate feedbacks resulting from enhanced greenhouse gas emissions and that the magnitude and direction of these emissions are contingent upon wetland hydrology.  相似文献   

5.
生活污水尾水灌溉对麦秸还田水稻幼苗及土壤环境的影响   总被引:2,自引:0,他引:2  
通过盆栽试验研究了麦秸还田下生活污水尾水灌溉对水稻幼苗和土壤环境的影响.测定了不同处理水稻幼苗根系形态、根系活力、分蘖、株高、干物质累积量、土壤亚铁、有机酸、酶活性.结果表明: 与自来水灌溉相比,不施化肥氮时,生活污水尾水灌溉显著提高了水稻移栽后41 d的分蘖数和根系活力;正常施氮肥时,生活污水尾水灌溉显著促进了水稻根系和植株生长,根长、根表面积、根体积、根系活力、水稻分蘖数和干物质累积量均显著高于自来水灌溉处理.生活污水尾水灌溉处理显著降低了土壤Fe2+和有机酸含量,土壤脲酶、过氧化氢酶活性等显著提高.生活污水尾水灌溉和施氮耦合能有效缓解秸秆还田初期对水稻幼苗生长的不利影响,改善水稻生长状况,提升土壤肥力和质量.  相似文献   

6.
Battery storage systems (BSSs) are popular as a means to increase the self-consumption rates of residential photovoltaics. However, their environmental impact is under discussion, given the greenhouse gas emissions caused by the production and the efficiency losses during operation. Against this background, we carry out a holistic environmental assessment of residential BSSs by combining a partial life cycle assessment for the production phase with a detailed simulation of 162 individual German households for the operational phase. As regards the production phase, we only find small differences between the carbon footprints of different cell chemistries. Moreover, we can show that the balance of plant components have a comparable impact on the global warming potential as the cell modules. In terms of the operational phase, our simulations show that BSSs can compensate at least parts of their efficiency losses by shifting electricity demand from high-emission to low-emission periods. Under certain conditions, the operational phase of the BSSs can even overcompensate the emissions from the production phase and lead to a positive environmental impact over the lifetime of the systems. As the most relevant drivers, we find the exact emissions at the production stage, the individual household load patterns, the system efficiency, and the applied operational strategy.  相似文献   

7.
8.
Dairy systems in Europe contribute to the emissions of the greenhouse gases (GHGs) nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). In this paper, the effects of improved nitrogen (N) management on GHG emissions from Dutch dairy farms are determined. The GHG emissions are calculated using the panel on climate change (IPCC) methodology for the Netherlands, an updated and refined IPCC methodology, and a full accounting approach. The changes in dairy farming over the last 20 years, and the consequences for N management are described using detailed farm‐level data, collected in 1985, 1997 and 2002. The selected years represent distinct stages in the implementation of N policies. The changes in N management have reduced the GHG emissions. A reduction of the N surplus per kilogram milk with 1 g N reduced the GHG emissions per kilogram milk with approximately 29 g CO2‐equivalents. The reduction of the N surpluses was mainly brought about by reduced fertilizer use and reduced grazing time. The use of updated and refined emission factors resulted in higher CH4 emissions and lower N2O emissions. On average, the overall emission was 36% higher with the refined method. Full accounting, including all direct and indirect emissions of CH4, N2O and CO2, increased the emission with 36% compared with the refined IPCC methodology. We conclude that the N surplus at farm level is a useful indicator of GHG emissions. A full accounting system as presented in this study may effectively enable farmers to address the issue of emissions of GHGs in their operational management decisions. Both approaches serve their own specific objectives: full accounting at the farm level to explore mitigation options, and the IPCC methods to report changes in GHG emissions at the national level.  相似文献   

9.
Dairy production systems are often criticized as being major emitters of greenhouse gases (GHG). In this context, the extension of the length of the productive life of dairy cows is gaining interest as a potential GHG mitigation option. In the present study, we investigated cow and system GHG emission intensity and profitability based on data from 30 dairy cows of different productive lifetime fed either no or limited amounts of concentrate. Detailed information concerning productivity, feeding and individual enteric methane emissions of the individuals was available from a controlled experiment and herd book databases. A simplified GHG balance was calculated for each animal based on the milk produced at the time of the experiment and for their entire lifetime milk production. For the lifetime production, we also included the emissions arising from potential beef produced by fattening the offspring of the dairy cows. This accounted for the effect that changes in the length of productive life will affect the replacement rate and thus the number of calves that can be used for beef production. Profitability was assessed by calculating revenues and full economic costs for the cows in the data set. Both emission intensity and profitability were most favourable in cows with long productive life, whereas cows that had not finished their first lactation performed particularly unfavourably with regard to their emissions per unit of product and rearing costs were mostly not repaid. Including the potential beef production, GHG emissions in relation to total production of animal protein also decreased with age, but the overall variability was greater, as the individual cow history (lifetime milk yield, twin births, stillbirths, etc.) added further sources of variation. The present results show that increasing the length of productive life of dairy cows is a viable way to reduce the climate impact and to improve profitability of dairy production.  相似文献   

10.
Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win–win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.  相似文献   

11.
本研究开展了连续3年(2017-2019年)的田间试验,通过设置不施肥(CK)、单施化肥(F)、等氮条件下有机肥配施化肥(FM)(有机肥全部于早稻季施用)3个处理,对双季稻轮作系统作物产量、土壤肥力进行分析,并连续2年(2018-2019年)对单施化肥和有机肥配施化肥处理的CH4和N20排放进行监测.结果表明:施肥可以...  相似文献   

12.
Despite their predominance worldwide, few studies have been conducted to look at the impact of sheep production systems relying on transhumance practices in arid and continental conditions, on farm-level greenhouse gas (GHG) emissions. Using Turkey as an example, this paper examines on farm-level GHG emissions calculated for two contrasting sheep production systems under arid and continental climate conditions. Production and management data were obtained through face-to-face interviews carried out on 10 transhumance and 15 semi-intensive meat sheep farms in Turkey. A total of seven GHG emission estimates were then calculated for each farm with the Agricultural Resource Efficiency Calculator (AgRECalc©) tool; i) total Carbon Dioxide (CO2) from energy use (kg CO2e), ii) total Carbon Dioxide equivalent (CO2e) from methane (kg CO2e), iii) total CO2e from nitrous oxide (kg CO2e), iv) whole farm and enterprise CO2e emissions (kg CO2e), v) net emission from land use (kg CO2e), vi) whole farm CO2e emissions per kg of farm output (kg CO2e/kg output), vii) product CO2e emissions (meat): kg CO2e / kg live weight, and viii) farm output (kg of sheep). Multivariate analyses (using R software) were carried out to compare both farm types and their respective carbon emissions. The total farm output per ewe was lower in the transhumance farms (7.4 kg/ewe) than in the semi-intensive farms (7.7 kg/ewe). The kg CO2e per kg of output was also lower for the transhumance farms (46.2 kg CO2e) than for the semi-intensive ones (56.5 kg CO2e). This trend was similar for the amount of CO2e per kg of live weight produced (20.8 kg and 25.4 kg for the transhumance and the semi-intensive farms, respectively). Despite overall net emissions from land use being greater on average for the transhumance farms, once measured per hectare, they were found to be lower than those for the semi-intensive farms. This study provides a reference point for different sheep production systems’ GHG emission impact in continental rangelands in Turkey.  相似文献   

13.
采用3因素2水平交互设计室内恒温培养试验,通过调控秸秆施用、氮肥用量及食细菌线虫,探讨三者对土壤微生物生物量碳氮(Cmic和Nmic)、可溶性碳氮(DOC、DON)、矿质氮(NH4+-N和NO3--N)及温室气体排放(CO2、N2O和CH4)的交互影响.结果表明: 施用秸秆显著增加了食细菌线虫数量、Cmic和Nmic,而随着氮肥用量增加,Cmic和Nmic降低,食细菌线虫对Cmic和Nmic的影响则依赖于秸秆和氮肥用量.秸秆、氮肥和食细菌线虫对可溶性碳氮和矿质氮表现出强烈的交互作用,其中秸秆和氮肥均增加了DOC、NH4+ -N和NO3--N;食细菌线虫对DOC的抑制作用和对矿质氮的促进作用达到显著水平.秸秆处理对CO2、N2O的促进及对CH4的抑制均达到显著水平,而线虫和氮肥的影响则更多表现出交互作用.在培养第56天,有秸秆时,低量氮肥下食细菌线虫显著促进了CO2的排放,而高量氮肥下则表现出对CO2和N2O显著的抑制作用.总之,土壤生态功能的发挥不可忽视土壤动物的作用.  相似文献   

14.
15.
The growing demand for bioenergy increases pressure on peatlands. The novel strategy of wet peatlands agriculture (paludiculture) may permit the production of bioenergy from biomass while avoiding large greenhouse gas emissions as occur during conventional crop cultivation on drained peat soils. Herein, we present the first greenhouse gas balances of a simulated paludiculture to assess its suitability as a biomass source from a climatic perspective. In a rewetted peatland, we performed closed‐chamber measurements of carbon dioxide, methane, and nitrous oxide exchange in stands of the potential crops Phragmites australis, Typha latifolia, and Carex acutiformis for two consecutive years. To simulate harvest, the biomass of half of the measurement spots was removed once per year. Carbon dioxide exchange was close to neutral in all tested stands. The effect of biomass harvest on the carbon dioxide exchange differed between the 2 years. During the first and second year, methane emissions were 13–63 g m?2 a?1 and 2–5 g m?2 a?1, respectively. Nitrous oxide emissions lay below our detection limit. Net greenhouse gas balances in the study plots were close to being climate neutral during both years except for the Carex stand, which was a source of greenhouse gases in the first year (in CO2‐equivalents: 18 t ha?1 a?1). Fifteen years after rewetting the net greenhouse gas balance of the study site was similar to those of pristine fens. In addition, we did not find a significant short‐term effect of biomass harvest on net greenhouse gas balances. In our ecosystem, ~17 t ha?1 a?1 of CO2‐equivalent emissions are saved by rewetting compared to a drained state. Applying this figure to the fen area in northern Germany, emission savings of 2.8–8.5 Mt a?1 CO2‐equivalents could possibly be achieved by rewetting; this excludes additional savings by fossil fuel replacement.  相似文献   

16.
Hua Xu  Yasukazu Hosen 《Plant and Soil》2010,335(1-2):373-383
Methane (CH4) emissions from paddy fields are believed to contribute to the greenhouse effect. Yet, in the literature, only a few reports are available on the effects of soil moisture regime and straw application in the non-rice-growing season separately on CH4 emissions during the rice-growing season. The objective of this study was to investigate CH4 emissions during the winter fallow and the following rice-growing season as affected by soil moisture regime and rice straw application during the fallow season. The experiment was designed to have 10 treatments, that is, five soil water contents (18%, 38%, 59%, and 79% of soil water-holding capacity [SWHC] and flooding; hereafter, W18, W38, W59, W79, and W100) and two rice straw application rates (0.91 and 4.55 g kg-1 dry soil; hereafter, Sl and Sh) during the fallow season. Both W100 and W79 showed obvious CH4 emissions during the fallow season, contributing 5.3% and 5.9% (Sl) and 34.8% and 27.8% (Sh), respectively, to their gross CH4 emissions, which increased significantly with the rising soil water content in the fallow season, except for W18. Rice straw application significantly affected gross CH4 emissions, but its effect was strongly influenced by soil moisture. The CH4 emissions per unit weight of rice straw applied of W38 and W59 were 9% and 16%, respectively, as much as that of W100. The findings demonstrate that keeping the soil water content in the range of 38–59% SWHC in the fallow season is important for a reduction in CH4 emissions.  相似文献   

17.
Conventional cost‐effectiveness calculations ignore the implications of greenhouse gas (GHG) emissions timing and thus may not properly inform decision‐makers in the efficient allocation of resources to mitigate climate change. To begin to address this disconnect with climate change science, we modify the conventional cost‐effectiveness approach to account for emissions timing. GHG emissions flows occurring over time are translated into an ‘Equivalent Present Emission’ based on radiative forcing, enabling a comparison of system costs and emissions on a consistent present time basis. We apply this ‘Present Cost‐Effectiveness’ method to case studies of biomass‐based electricity generation (biomass co‐firing with coal, biomass cogeneration) to evaluate implications of forest carbon trade‐offs on the cost‐effectiveness of emission reductions. Bioenergy production from forest biomass can reduce forest carbon stocks, an immediate emissions source that contributes to atmospheric greenhouse gases. Forest carbon impacts thereby lessen emission reductions in the near‐term relative to the assumption of biomass ‘carbon neutrality’, resulting in higher costs of emission reductions when emissions timing is considered. In contrast, conventional cost‐effectiveness approaches implicitly evaluate strategies over an infinite analytical time horizon, underestimating nearer term emissions reduction costs and failing to identify pathways that can most efficiently contribute to climate change mitigation objectives over shorter time spans (e.g. up to 100 years). While providing only a simple representation of the climate change implications of emissions timing, the Present Cost‐Effectiveness method provides a straightforward approach to assessing the cost‐effectiveness of emission reductions associated with any climate change mitigation strategy where future GHG reductions require significant initial capital investment or increase near‐term emissions. Timing is a critical factor in determining the attractiveness of any investment; accounting for emissions timing can better inform decisions related to the merit of alternative resource uses to meet near‐, mid‐, and long‐term climate change mitigation objectives.  相似文献   

18.
微塑料因在土壤环境中广泛存在及其潜在的生态风险而受到越来越多的关注。微塑料的赋存会改变土壤理化性质,并对土壤微生物群落及其驱动的生物地球化学过程产生影响,而相关研究尚处于起步阶段。可生物降解塑料作为传统塑料的替代品,越来越多地应用于农业活动,并释放到土壤中。然而,可生物降解微塑料对土壤微生物特性产生影响的研究鲜有报道。基于此,本试验以我国三江平原水稻田土壤为研究对象,选取了2种常见的微塑料为试验材料,分别为传统型微塑料聚丙烯(Polypropylene,PP)和可降解微塑料聚乳酸(Polylactic acid,PLA),进行了为期41d的微宇宙培养实验,旨在分析不同浓度与类型的微塑料对土壤可溶性有机碳(Dissolved Organic Carbon,DOC)含量及官能团特征、温室气体排放以及微生物群落结构的差异性影响。结果表明,传统型微塑料PP与可降解微塑料PLA添加均对土壤理化性质与微生物群落产生显著影响。其中,微塑料添加大体上增加了土壤DOC含量,PLA的促进作用较为明显,且增加含量与微塑料添加量呈正相关;PP和PLA均影响土壤DOC分子结构,削弱了土壤团聚化程度并促进了大分子量DOC化合物的生成;微塑料的添加促进土壤CH4排放,而有效抑制了土壤CO2排放;微塑料显著改变了土壤细菌和真菌群落的丰富度与多样性。相关分析结果表明,土壤CO2累计排放量与芳香族化合物结构及疏水性等官能团特征、变形菌门(Proteobacteria)与放线菌门(Actinobacteria)均呈显著正相关关系。以上结果表明,微塑料添加改变了土壤DOC含量及官能团特征与微生物环境,进而影响土壤温室气体排放。本研究为今后微塑料对土壤地球化学和微生物特性的影响研究提供了科学的思路,同时也有助于评估微塑料对土壤生态系统的生态风险。  相似文献   

19.

Background, aim and scope  

Fly ash, a by-product of coal-fired power stations, is substituted for Portland cement to improve the properties of concrete and reduce the embodied greenhouse gas (GHG) emissions. Much of the world’s fly ash is currently disposed of as a waste product. While replacing some Portland cement with fly ash can reduce production costs and the embodied emissions of concrete, the relationship between fly ash content and embodied GHG emissions in concrete has not been quantified. The impact of fly ash content on embodied water is also unknown. Furthermore, it is not known whether a global trade in fly ash for use in concrete is feasible from a carbon balance perspective, or if transport over long distances would eliminate any CO2 savings. This paper aims to quantify GHG emissions and water embodied in concrete (fc = 32 MPa) as a function of fly ash content and to determine the critical fly ash transportation distance, beyond which use of fly ash in concrete increases embodied GHG emissions.  相似文献   

20.
Background and aims

The litter layer is a major source of CO2, and it also influences soil-atmosphere exchange of N2O and CH4. So far, it is not clear how much of soil greenhouse gas (GHG) emission derives from the litter layer itself or is litter-induced. The present study investigates how the litter layer controls soil GHG fluxes and microbial decomposer communities in a temperate beech forest.

Methods

We removed the litter layer in an Austrian beech forest and studied responses of soil CO2, CH4 and N2O fluxes and the microbial community via phospholipid fatty acids (PLFA). Soil GHG fluxes were determined with static chambers on 22 occasions from July 2012 to February 2013, and soil samples collected at 8 sampling events.

Results

Litter removal reduced CO2 emissions by 30 % and increased temperature sensitivity (Q10) of CO2 fluxes. Diffusion of CH4 into soil was facilitated by litter removal and CH4 uptake increased by 16 %. This effect was strongest in autumn and winter when soil moisture was high. Soils without litter turned from net N2O sources to slight N2O sinks because N2O emissions peaked after rain events in summer and autumn, which was not the case in litter-removal plots. Microbial composition was only transiently affected by litter removal but strongly influenced by seasonality.

Conclusions

Litter layers must be considered in calculating forest GHG budgets, and their influence on temperature sensitivity of soil GHG fluxes taken into account for future climate scenarios.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号