共查询到20条相似文献,搜索用时 0 毫秒
1.
Woody encroachment has been a major land cover change in dryland ecosystems during the past century. While numerous studies have demonstrated strong effects of woody encroachment on soil carbon (C), nitrogen (N), and phosphorus (P) storage, far less is known about the plasticity of soil C:N:P stoichiometry in response to woody encroachment. We assessed landscape-scale patterns of spatial heterogeneity in soil C:N:P ratios throughout a 1.2 m soil profile in a region where grassland is being replaced by a diverse assemblage of subtropical woody plants dominated by Prosopis glandulosa, an N 2-fixing tree. Woody species had leaf and fine root C:N:P ratios significantly different from grasses. Variation in soil C:N ratios in both horizontal and vertical planes was remarkably smaller than that of soil N:P and C:P ratios. Spatial patterns of soil C:N ratio throughout the profile were not strongly related to vegetation cover. In contrast, spatial patterns of soil N:P and C:P ratios displayed a strong resemblance to that of vegetation cover throughout the soil profile. Within the uppermost soil layer (0–5 cm), soil N:P and C:P ratios were higher underneath woody patches while lower within the grassland; however, this pattern was reversed in subsurface soils (15–120 cm). These results indicate a complex response of soil C:N:P stoichiometry to vegetation change, which could have important implications for understanding C, N, and P interactions and nutrient limitations in dryland ecosystems. 相似文献
2.
We measured DOM fluxes from the O horizon of Hawaiiansoils that varied in nutrient availability and mineralcontent to examine what regulates the flux ofdissolved organic carbon (DOC), nitrogen (DON) andphosphorus (DOP) from the surface layer of tropicalsoils. We examined DOM fluxes in a laboratory study from N, P and N+Pfertilized and unfertilized sites on soils that rangedin age from 300 to 4 million years old. The fluxesof DOC and DON were generally related to the % Cand % N content of the soils across the sites. Ingeneral, CO 2 and DOC fluxes were not correlatedsuggesting that physical desorption, dissolution andsorption reactions primarily control DOM release fromthese surface horizons. The one exception to thispattern was at the oldest site where there was asignificant relationship between DOC and CO 2flux. The oldest site also contained the lowestmineral and allophane content of the three sites andthe DOC-respiration correlation indicates arelationship between microbial activity and DOC fluxat this site. N Fertilization increased DON fluxes by50% and decreased DOC:DON ratios in the youngest,most N poor site. In the older, more N rich sites, Nfertilization neither increased DON fluxes nordecreased DOM C:N ratios. Similarly, short termchanges in N availability in laboratory-based soil Nand P fertilization experiments did not affect the DOMC:N ratios of leachate. DOM C:N ratios were similar tosoil organic matter C:N ratios, and changes in DOM C:Nratios with fertilization appeared to have beenmediated through long term effects on SOM C:N ratiosrather than through changes in microbial demand for Cand N. There was no relationship between DON andinorganic N flux during these incubations suggestingthat the organic and inorganic components of N fluxfrom soils are regulated by different factors and thatDON fluxes are not coupled to immediate microbialdemand for N. In contrast to the behavior of DON, thenet flux of dissolved organic phosphorus (DOP) and DOMC:P ratios responded to both long-term P fertilizationand natural variation in reactive P availability. There was lower DOP flux and higher DOM C:P ratiosfrom soils characterized by low P availability andhigh DOP flux and narrow DOM C:P ratios in sites withhigh P availability. DOP fluxes were also closelycorrelated with dissolved inorganic P fluxes. PFertilization increased DOP fluxes by 73% in theyoungest site, 31% in the P rich intermediate agesite and 444% in the old, P poor site indicating thatDOP fluxes closely track P availability in soils. 相似文献
4.
Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges. 相似文献
5.
Ecological stoichiometry has been widely applied in aquatic ecosystems, but has limited implications in terrestrial ecosystems. The pot experiments with Trifolium repens L. were conducted to demonstrate the relations between C: N: P, biological components and growth rate of clover colonized by arbuscular mycorrhizal (AM) fungi. The results showed that for mycorrhizal clover, N, P concentrations increased with increasing growth rate, in support of the Growth Rate Hypothesis (GRH). Mycorrhizal clover had higher P and RNA concentrations than non-mycorrhizal clover, indicating that the increase in P concentration would invest more RNA to meet the synthesis of protein. Results also indicated that the increase in N concentration with rapid growth rate may be attributed to the increase in the concentration of protein N. Underlying mechanisms driving the association of C: N: P with growth rate for symbiotic partners should help elucidate the allocation of major nutrients to cellular organs and trophic dynamics in terrestrial ecosystems. 相似文献
6.
This study examined the literature in ISI Web of Science to identify the effects that the main drivers of global change have on the nutrient concentrations and C:N:P stoichiometry of organisms and ecosystems, and examined their relationship to changes in ecosystem structure and function. We have conducted a meta-analysis by comparing C:N:P ratios of plants and soils subjected to elevated [CO 2] with those subjected to ambient [CO 2]. A second meta-analysis compared the C:N:P ratios of plants and soils that received supplemental N to simulate N deposition and those that did not receive supplemental N. On average, an experimental increase in atmospheric [CO 2] increased the foliar C:N ratios of C3 grasses, forbs, and woody plants by 22%, but the foliar ratios of C4 grasses were unaffected. This trend may be enhanced in semi-arid areas by the increase in droughts that have been projected for the coming decades which can increase leaf C:N ratios. The available studies show an average 38% increase in foliar C:P ratios in C3 plants in response to elevated atmospheric [CO 2], but no significant effects were observed in C4 grasses. Furthermore, studies that examine the effects of elevated atmospheric [CO 2] on N:P ratio (on a mass basis) are warranted since its response remains elusive. N deposition increases the N:P ratio in the plants of terrestrial and freshwater ecosystems, and decreases plants and organic soil C:N ratio (25% on average for C3 plants), reducing soil and water N 2 fixation capacity and ecosystem species diversity. In contrast, in croplands subjected to intense fertilization, mostly, animal slurries, a reduction in soil N:P ratio can occur because of the greater solubility and loss of N. In the open ocean, there are experimental observations showing an ongoing increase in P-limited areas in response to several of the factors that promote global change, including the increase in atmospheric [CO 2] which increases the demand for P, the warming effect that leads to an increase in water column stratification, and increases in the N:P ratio of atmospheric inputs. Depending on the type of plant and the climate where it grows, warming can increase, reduce, or have no effect on foliar C:N ratios. The results suggest that warming and drought can increase C:N and C:P ratios in warm-dry and temperate-dry terrestrial ecosystems, especially, when high temperatures and drought coincide. Advances in this topic are a challenge because changes in stoichiometric ratios can favour different types of species and change ecosystem composition and structure. 相似文献
7.
Nitrogen supply is often assumed to limitmarine primary production. A global analysis of totalnitrogen (N) to phosphorus (P) molar ratios shows thattotal N:P is low (<16:1) in some estuarine andcoastal ecosystems, but up to 100:1 in open oceans.This implies that elements other than N may limitmarine production, except in human impacted, estuarineor coastal ecosystems. This pattern may reconcileconflicting enrichment studies, because N additionfrequently increases phytoplankton growth where totalN:P is expected to be low, but P, Fe, or Si augmentphytoplankton growth in waters where total N:P ishigh. Comparison of total N:P stoichiometry betweenmarine and freshwaters yields a model of the form ofthe aquatic N:P cycle. 相似文献
8.
Nitrogen (N) and sulphur (S) deposition, as well as altered soil moisture dynamics due to climate change can have large effects on fen meadow biogeochemistry and vegetation. Their combined effects may differ strongly from their separate effects, since each process affects different nutrients through different mechanisms. However, the impacts of these environmental problems are rarely studied in combination. We therefore investigated the separate and interactive effects of current levels of N- and S-deposition and changes in soil moisture dynamics on fen meadow vegetation. We focused on vegetation biomass and N:P stoichiometry, including access to soil P through root surface phosphatase activity, in a 3-year factorial addition experiment in an N-limited rich fen meadow in the Biebrza valley in Poland. We applied 29.5 kg N ha ?1 year ?1 and 32.1 kg S ha ?1 year ?1, which correspond to current deposition levels in Western Europe. Changes in soil moisture dynamics due to climate change were mimicked by amplified drying of the soil in summer. This level of N-deposition had limited effects on plant biomass production in this rich fen, despite low foliar N:P ratios that suggest N limitation. This level of S-deposition, however, resulted in decreased vegetation P-uptake and biomass. We also showed that increased summer drought resulted in considerable increases in vegetation biomass. We found no interactive effects on vegetation biomass or N:P stoichiometry, possibly as a result of the limited main effects of the separate processes. 相似文献
9.
We have developed a model to simulate the dynamics of C, N, P, and S in cultivated and uncultivated grassland soils. The model uses a monthly time step and can simulate the dynamics of soil organic matter over long time periods (100 to 10,000 years). It was used to simulate the impact of cultivation (100 years) on soil organic matter dynamics, nutrient mineralization, and plant production and to simulate soil formation during a 10,000 year run. The model was validated by comparing the simulated impact of cultivation on soil organic matter C, N, P, and S dynamics with observed data from sites in the northern Great Plains. The model correctly predicted that N and P are the primary limiting nutrients for plant production and simulated the response of the system to inorganic N, P, and S fertilizer. Simulation results indicate that controlling the C:P and C:S ratios of soil organic matter fractions as functions of the labile P and S levels respectively, allows the model to correctly simulate the observed changes in C:P and C:S ratios in the soil and to simulate the impact of varying the labile P and S levels on soil P and S net mineralization rates. 相似文献
10.
Both elevated atmospheric carbon dioxide (CO 2) and nitrogen (N) deposition may induce changes in C:N ratios in plant tissues and mineral soil. However, the potential mechanisms driving the stoichiometric shifts remain elusive. In this study, we examined the responses of C:N ratios in both plant tissues and mineral soil to elevated CO 2 and N deposition using data extracted from 140 peer-reviewed publications. Our results indicated that C:N ratios in both plant tissues and mineral soil exhibited consistent increases under elevated CO 2 regimes whereas decreases in C:N ratios were observed in response to experimental N addition. Moreover, soil C:N ratio was less sensitive than plant C:N ratio to both global change scenarios. Our results also showed that the responses of stoichiometric ratios were highly variable among different studies. The changes in C:N ratio did not exhibit strong correlations with C dynamics but were negatively associated with corresponding changes in N content. These results suggest that N dynamics drive stoichiometric shifts in both plant tissues and mineral soil under both elevated CO 2 and N deposition scenarios. 相似文献
12.
A short overview of the biodiversity of prokaryotes (the domains bacteria and archaea) is given, with respect to morpholoy, physiology, and biochemistry. The importance of prokaryotes in food chains, nutrient and biogeochemical cycles, and for the maintenance of a balanced atmosphere is explained and stressed. The involvement of prokaryotes in symbiotic mutualisms and in pathogenicity is discussed. 相似文献
13.
Well-constrained carbon:nitrogen:phosphorus (C:N:P) ratios in planktonic biomass, and their importance in advancing our understanding
of biological processes and nutrient cycling in marine ecosystems, has motivated ecologists to search for similar patterns
in terrestrial ecosystems. Recent analyses indicate the existence of “Redfield-like” ratios in plants, and such data may provide
insight into the nature of nutrient limitation in terrestrial ecosystems. We searched for analogous patterns in the soil and
the soil microbial biomass by conducting a review of the literature. Although soil is characterized by high biological diversity,
structural complexity and spatial heterogeneity, we found remarkably consistent C:N:P ratios in both total soil pools and
the soil microbial biomass. Our analysis indicates that, similar to marine phytoplankton, element concentrations of individual
phylogenetic groups within the soil microbial community may vary, but on average, atomic C:N:P ratios in both the soil (186:13:1)
and the soil microbial biomass (60:7:1) are well-constrained at the global scale. We did see significant variation in soil
and microbial element ratios between vegetation types (i.e., forest versus grassland), but in most cases, the similarities
in soil and microbial element ratios among sites and across large scales were more apparent than the differences. Consistent
microbial biomass element ratios, combined with data linking specific patterns of microbial element stoichiometry with direct
evidence of microbial nutrient limitation, suggest that measuring the proportions of C, N and P in the microbial biomass may
represent another useful tool for assessing nutrient limitation of ecosystem processes in terrestrial ecosystems. 相似文献
14.
The kinetics and elemental composition of cellular units that mediate production and respiration are the basis for the metabolic and stoichiometric theories of ecological organization. This theoretical framework extends to the activities of microbial enzymes released into the environment (ecoenzymes) that mediate the release of assimilable substrate from detrital organic matter. In this paper, we analyze the stoichiometry of ecoenzymatic activities in the surface sediments of lotic ecosystems and compare those results to the stoichiometry observed in terrestrial soils. We relate these ecoenzymatic ratios to energy and nutrient availability in the environment as well as microbial elemental content and growth efficiency. The data, collected by US Environmental Protection Agency, include the potential activities of 11 enzymes for 2,200 samples collected across the US, along with analyses of sediment C, N and P content. On average, ecoenzymatic activities in stream sediments are 2–5 times greater per gC than those of terrestrial soils. Ecoenzymatic ratios of C, N and P acquisition activities support elemental analyses showing that microbial metabolism is more likely to be C-limited than N or P-limited compared to terrestrial soils. Ratios of hydrolytic to oxidative activities indicate that sediment organic matter is more labile than soil organic matter and N acquisition is less dependent on humic oxidation. The mean activity ratios of glycosidases and aminopeptidases reflect the environmental abundance of their respective substrates. For both freshwater sediments and terrestrial soils, the mean C:nutrient ratio of microbial biomass normalized to growth efficiency approximates the mean ecoenzymatic C:nutrient activity ratios normalized to environmental C:nutrient abundance. This relationship defines a condition for biogeochemical equilibrium consistent with stoichiometric and metabolic theory. 相似文献
15.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton
on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic
nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton
clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton
biomass led to increased concentrations of nutrients (NH 4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore,
reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios
(TIN = NH 4 + NO 3 + NO 2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found
in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton
grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with
low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential
zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa.
Received: September 4, 2000 / Accepted: January 23, 2001 相似文献
16.
Wetland emergent vegetation of Tablas de Daimiel National Park (Central Spain), mainly composed by Cladium mariscus, Phragmites australis and Typha domingensis, was studied to test if population responses to environmental factors were invariant to scaling-up conditions from the single plant to the entire wetland. While the significance of the main controlling, abiotic factors (wetland location, sedimentary and water nitrogen and phosphorus, water level, duration of flooding) was that of earlier studies, the importance of them changed along with the level of plant organization. Our study showed that multiple effects occurred in the responses of helophyte populations to abiotic factors, and that these responses appeared to depend upon the level of observation involved, showing positive ( Typha biomass and sedimentary phosphorus), negative ( Cladium biomass and sedimentary phosphorus, Cladium large patch growth and total phosphorus), delayed (landscape cover of Phragmites and Cladium and water level of the previous year), saturation ( Cladium biomass and water level), threshold (small patch growth rate of Cladium and water level of the previous month) and non-linear (landscape cover of Phragmites and Cladium and total phosphorus in water) effects. 相似文献
17.
The dependence of competitive interactions on abiotic conditions is attracting increasing interest in the face of globally
rising temperatures and altered biogeochemical cycles of major nutrients. In a microcosm experiment involving a natural inoculum
of benthic microalgae, temperature and nutrient supply ratios were manipulated in order to test three main hypotheses: (1)
temperature and nutrient supply ratios determine species composition and diversity of the assemblage, (2) the identity of
the dominating species depends on nutrient supply and temperature, and (3) higher temperature leads to faster competitive
exclusion and thus more rapid decline in species richness. Over a period of 7 weeks, algal biomass reached an equilibrium
carrying capacity, with was higher at colder temperatures and intermediate N:P supply ratios (N:P = 16). Initial growth rate
increased with temperature and under high P-supply. Species richness in the stationary phase of the experiment decreased with
increasing temperature, reflecting a higher extinction rate in the warmer treatments, which were also characterized by higher
dominance of single species. Thus, increasing temperature both altered the identity of the dominating species and accelerated
competitive displacement. This experiment thus indicates that warming might influence outcome and temporal dynamics in species
interactions, and thereby eventually local diversity. 相似文献
18.
N and P have different eutrophication effects on grassland communities, yet the underlying mechanisms are poorly understood. To examine plant growth in response to the varying (relative) supply of N and P, we conducted a two-year greenhouse experiment. Five grasses and three herbs were grown with three N:P supply ratios at two overall nutrient supply levels. During the first year the plant growth was relatively low at both high and low N:P supply ratios, whereas during the second year the growth was especially low at a high N:P supply ratio. This second-year low growth was attributed to the high root death rate, which was influenced by a high N:P supply ratio rather than by the nutrient supply level. Species responded differently, especially in P uptake and loss at a high N:P supply ratio. Each species seemed to have a different strategy for P limitation, e.g. an efficient P uptake or a high P resorption rate. Species typical of P-limited grasslands had neither better P uptake nor better P retention at a high N:P supply ratio. This study quantitatively demonstrates an increased plant root death triggered by strong P limitation. This finding indicates a possible extra effect of N eutrophication on ecosystem functioning via changed N:P stoichiometry. 相似文献
19.
Ephemeral plants are a crucial vegetation component in temperate deserts of Central Asia, and play an important role in biogeochemical cycle and biodiversity maintenance in desert ecosystems. However, the nitrogen (N) and phosphorus (P) status and interrelations of leaf-root-soil of ephemeral plants remain unclear. A total of 194 leaf-root-soil samples of eight ephemeral species at 37 sites in the Gurbantunggut Desert, China were collected, and then the corresponding N and P concentrations, and the N:P ratio were measured. Results showed that soil parameters presented no significant difference among the eight species. The total soil N:P was only 0.116 (geomean), indicating limited soil N, while the available soil N:P (4.896, geomean) was significantly larger than the total N:P. The leaf N (averagely 30.995 mg g?1) and P (averagely 1.523 mg g?1) concentrations were 2.64–8.46 and 0.93–3.99 times higher than the root N (averagely 8.014 mg g?1) and P (averagely 0.802 mg g?1) concentrations, respectively. Thus, leaf N:P (averagely 21.499) was 1.410–2.957 times higher than root N:P (averagely 11.803). Meanwhile, significant interspecific differences existed in plant stoichiometric traits. At the across-species level, N content scaled as the 3/4-power of P content in both leaves and roots. Leaf and root N:P ratios were mainly influenced by P; however, the leaf-to-root N or P ratio was dominated by roots. Leaf and root N, P contents and N:P were generally unrelated to soil nutrients, and the former presented lower variation than the latter, indicating a strong stoichiometric homeostasis for ephemerals. These results demonstrate that regardless of soil nutrient supply capacity in this region, the fast-growing ephemeral plants have formed a specific leaf-root-soil stoichiometric relation and nutrient use strategy adapting to the extreme desert environment. 相似文献
20.
We report the nitrogen (N), phosphorus (P), and carbon (C) stoichiometry for each of the five organ-types (leaves, aerial stems, reproductive organs, roots, and tubers) of 17 actively growing Eranthis hyemalis plants differing in size (as measured in g C). We also report the N, P, and C stoichiometry of 20 winterized tubers, which are the only perennial organs of this species. Comparisons between whole-plant and winterized N/C and P/C levels indicate that N was resorbed from aerial organs and stored in tubers by the end of the growing season. Leaves were substantial reservoirs for N and P. With few exceptions, N scaled isometrically with respect to C for each organ-type, whereas P scaled as the 3/4 power of C. Thus, N is proportional to P(3/4), which is proportional to C regardless of organ-type. Additionally, annual growth rate G of shoots (leaves and aerial stems) scaled as the -3 power of leaf N/P quotients such that G was proportional to the 3/4 power of leaf P. We suggest that these scaling relationships (together with previously reported allometric trends across herbaceous species) show that growth is constrained by organ-specific N and P allocation patterns (presumably to proteins and ribosomes, respectively). 相似文献
|