首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Oxidation of nitrite to nitrate in aquaria is typically attributed to bacteria belonging to the genus Nitrobacter which are members of the alpha subdivision of the class Proteobacteria. In order to identify bacteria responsible for nitrite oxidation in aquaria, clone libraries of rRNA genes were developed from biofilms of several freshwater aquaria. Analysis of the rDNA libraries, along with results from denaturing gradient gel electrophoresis (DGGE) on frequently sampled biofilms, indicated the presence of putative nitrite-oxidizing bacteria closely related to other members of the genus Nitrospira. Nucleic acid hybridization experiments with rRNA from biofilms of freshwater aquaria demonstrated that Nitrospira-like rRNA comprised nearly 5% of the rRNA extracted from the biofilms during the establishment of nitrification. Nitrite-oxidizing bacteria belonging to the alpha subdivision of the class Proteobacteria (e.g., Nitrobacter spp.) were not detected in these samples. Aquaria which received a commercial preparation containing Nitrobacter species did not show evidence of Nitrobacter growth and development but did develop substantial populations of Nitrospira-like species. Time series analysis of rDNA phylotypes on aquaria biofilms by DGGE, combined with nitrite and nitrate analysis, showed a correspondence between the appearance of Nitrospira-like bacterial ribosomal DNA and the initiation of nitrite oxidation. In total, the data suggest that Nitrobacter winogradskyi and close relatives were not the dominant nitrite-oxidizing bacteria in freshwater aquaria. Instead, nitrite oxidation in freshwater aquaria appeared to be mediated by bacteria closely related to Nitrospira moscoviensis and Nitrospira marina.  相似文献   

2.
3.
Immunoblot analyses performed with three monoclonal antibodies (MAbs) that recognized the nitrite oxidoreductase (NOR) of the genus Nitrobacter were used for taxonomic investigations of nitrite oxidizers. We found that these MAbs were able to detect the nitrite-oxidizing systems (NOS) of the genera Nitrospira, Nitrococcus, and Nitrospina. The MAb designated Hyb 153-2, which recognized the alpha subunit of the NOR (alpha-NOR), was specific for species belonging to the genus Nitrobacter. In contrast, Hyb 153-3, which recognized the beta-NOR, reacted with nitrite oxidizers of the four genera. Hyb 153-1, which also recognized the beta-NOR, bound to members of the genera Nitrobacter and Nitrococcus. The molecular masses of the beta-NOR of the genus Nitrobacter and the beta subunit of the NOS (beta-NOS) of the genus Nitrococcus were identical (65 kDa). In contrast, the molecular masses of the beta-NOS of the genera Nitrospina and Nitrospira were different (48 and 46 kDa). When the genus-specific reactions of the MAbs were correlated with 16S rRNA sequences, they reflected the phylogenetic relationships among the nitrite oxidizers. The specific reactions of the MAbs allowed us to classify novel isolates and nitrite oxidizers in enrichment cultures at the genus level. In ecological studies the immunoblot analyses demonstrated that Nitrobacter or Nitrospira cells could be enriched from activated sludge by using various substrate concentrations. Fluorescence in situ hybridization and electron microscopic analyses confirmed these results. Permeated cells of pure cultures of members of the four genera were suitable for immunofluorescence labeling; these cells exhibited fluorescence signals that were consistent with the location of the NOS.  相似文献   

4.
The fatty acid profiles of all described species of the nitrite-oxidizing genera Nitrobacter, Nitrococcus, Nitrospina and Nitrospira were analyzed. The four genera had distinct profiles, which can be used for the differentiation and allocation of new isolates to these genera. The genus Nitrobacter is characterized by vaccenic acid as the main compound with up to 92% of the fatty acids and the absence of hydroxy fatty acids. The genus Nitrococcus showed cis-9-hexadecenoic acid, hexadecanoic acid and vaccenic acid as main parts. Small amounts of 3-hydroxy-dodecanoic acid were detected. The genus Nitrospina possessed tetradecanoic acid and cis-9-hcxadecenoic acid as main compounds, also 3-hydroxy-hexadecanoic acid was detected for this genus. The genus Nitrospira showed a pattern with more variations among the two described species. These organisms are characterized by the cis-7 and cis-11-isomers of hexadecenoic acid. For Nitrospira moscoviensis a specific new fatty acid was found, which represented the major constituent in the fatty acid profiles of autotrophically grown cultures. It was identified as 11-methyl-hexadecanoic acid. Since this compound is not known for other bacterial taxa, it represents a potential lipid marker for the detection of Nitrospira moscoviensis relatives in enrichment cultures and environmental samples. A cluster analysis of the fatty acid profiles is in accordance with 16S rRNA sequence-based phylogeny of the nitrite-oxidizing bacteria.  相似文献   

5.
Previously uncultured nitrite-oxidizing bacteria affiliated to the genus Nitrospira have for the first time been successfully enriched from activated sludge from a municipal wastewater treatment plant. During the enrichment procedure, the abundance of the Nitrospira-like bacteria increased to approximately 86% of the total bacterial population. This high degree of purification was achieved by a novel enrichment protocol, which exploits physiological features of Nitrospira-like bacteria and includes the selective repression of coexisting Nitrobacter cells and heterotrophic contaminants by application of ampicillin in a final concentration of 50 microg ml(-1). The enrichment process was monitored by electron microscopy, fluorescence in situ hybridization (FISH) with rRNA-targeted probes and fatty acid profiling. Phylogenetic analysis of 16S rRNA gene sequences revealed that the enriched bacteria represent a novel Nitrospira species closely related to uncultured Nitrospira-like bacteria previously found in wastewater treatment plants and nitrifying bioreactors. The enriched strain is provisionally classified as 'Candidatus Nitrospira defluvii'.  相似文献   

6.
Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges from these activities have caused adverse impacts on the quality of the receiving waterways. In particular nitrogenous compounds, which may accumulate in aquaculture ponds, can be toxic to aquatic animals and cause environmental problems such as eutrophication. The mineralization process is well known, but certain aspects of the microbial ecology of nitrifiers, the microorganisms that convert ammonia to nitrate, are poorly understood. A previously reported enrichment of nitrifying bacteria (ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) from a shrimp farm inoculated in a sequencing batch reactor (SBR) was studied by molecular methods. The initial identification and partial quantification of the nitrifying bacteria (AOB and NOB) were carried out by fluorescence in situ hybridization (FISH) using previously published 16S rRNA-targeting oligonucleotide probes. The two dominant bacterial groups detected by FISH were from the Cytophaga-Flavobacterium-Bacteroides and Proteobacteria (beta subdivision) phyla. Published FISH probes for Nitrobacter and Nitrospira did not hybridize to any of the bacterial cells. Therefore it is likely that new communities of NOBs, differing from previously reported ones, exist in the enrichments. Molecular genetic techniques (cloning, sequencing, and phylogenetic analysis) targeting the 16S rRNA genes from the nitrifying enrichments were performed to identify putative AOBs and NOBs.  相似文献   

7.
D A Stahl  R Key  B Flesher    J Smit 《Journal of bacteriology》1992,174(7):2193-2198
Caulobacter is a distinctive genus of prosthecate bacteria. Because caulobacters adhere to surfaces and are found in diverse locales, their role in oligotrophic environments and bacterial biofilm communities is of interest. The phylogenetic relationships of a group of marine and freshwater caulobacters were examined in part to address whether the taxonomic grouping of these bacteria (based primarily on morphological characters) was consistent with 16S rRNA sequence divergence. The caulobacters examined (9 marine and 11 freshwater species or strains) were affiliated with the alpha proteobacteria. They made up a diverse yet, with the possible exception of a strain of Caulobacter subvibrioides, coherent assemblage. The diversity was most apparent in a comparison of freshwater and marine isolates; an early divergence within the main caulobacter lineage generally corresponded to strains isolated from freshwater and marine habitats. The marine caulobacter assemblage was not exclusive; it also embraced strains of marine hyphomonads and Rhodobacter capsulatus. We hypothesize that these genera are derived from more ancestral caulobacters. Overall, the data are consistent with the interpretation that all of the caulobacters examined, with the possible exception of C. subvibrioides, are ancestrally related, albeit anciently, and that most often division by terrestrial and marine habitats corresponds to an early evolutionary divergence within the genus.  相似文献   

8.
To assess links between the diversity of nitrite-oxidizing bacteria (NOB) in agricultural grassland soils and inorganic N fertilizer management, NOB communities in fertilized and unfertilized soils were characterized by analysis of clone libraries and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Previously uncharacterized Nitrospira-like sequences were isolated from both long-term-fertilized and unfertilized soils, but DGGE migration patterns indicated the presence of additional sequence types in the fertilized soils. Detailed phylogenetic analysis of Nitrospira-like sequences suggests the existence of one newly described evolutionary group and of subclusters within previously described sublineages, potentially representing different ecotypes; the new group may represent a lineage of noncharacterized Nitrospira species. Clone libraries of Nitrobacter-like sequences generated from soils under different long-term N management regimes were dominated by sequences with high similarity to the rhizoplane isolate Nitrobacter sp. strain PJN1. However, the diversity of Nitrobacter communities did not differ significantly between the two soil types. This is the first cultivation-independent study of nitrite-oxidizing bacteria in soil demonstrating that nitrogen management practices influence the diversity of this bacterial functional group.  相似文献   

9.
A new PCR-denaturing gel gradient electrophoresis (DGGE) tool based on the functional gene nxrA encoding the catalytic subunit of the nitrite oxidoreductase in nitrite-oxidizing bacteria (NOB) has been developed. The first aim was to determine if the primers could target representatives of NOB genera: Nitrococcus and Nitrospira. The primers successfully amplified nxrA gene sequences from Nitrococcus mobilis, but not from Nitrospira marina. The second aim was to develop a PCR-DGGE tool to characterize NOB community structure on the basis of Nitrobacter-like partial nrxA gene sequences (Nb-nxrA). We tested (1) the ability of this tool to discriminate between Nitrobacter strains, and (2) its ability to reveal changes in the community structure of NOB harbouring Nb-nrxA sequences induced by light grazing or intensive grazing in grassland soils. The DGGE profiles clearly differed between the four Nitrobacter strains tested. Differences in the structure of NOB community were revealed between grazing regimes. Phylogenetic analysis of the sequences corresponding to different DGGE bands showed that Nb-nxrA sequences did not group in management-specific clusters. Most of the nxrA sequences obtained from soils differed from nxrA sequences of NOB strains. Along with existing tools for characterizing the community structure of nitrifiers, this new approach is a significant step forward to performing comprehensive studies on nitrification.  相似文献   

10.
In this study a pilot-scale membrane bioreactor (MBR) and a conventional activated sludge plant (CASP), treating the same tannery wastewaters and in the same operating conditions, have been compared in order to evaluate the overall treatment efficiency, the presence and distribution of Gram negative bacteria and the kinetics of nitrifying bacteria. Process efficiency was evaluated in terms of organic and nitrogen compounds: the MBR showed a higher COD removal (+4%) and a more stable and complete nitrification. The Gram negative bacteria were detected by fluorescent in situ hybridization (FISH) with phylogenetic probes monitoring of alpha-, beta- and gamma-Proteobacteria, of the main ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria of the Nitrobacter and Nitrospira genera. The results showed that the main differences between the two sludges were: the higher abundance of alpha- and gamma-Proteobacteria in the MBR bioreactor and the presence of AOB aggregates only on the surfaces of MBR flocs. Finally, the titrimetric (pH-stat, DO-stat) tests showed similar values of the kinetic parameters of the nitrifiers both in MBR and CASP sludge.  相似文献   

11.
Geothermal environments are a suitable habitat for nitrifying microorganisms. Conventional and molecular techniques indicated that chemolithoautotrophic nitrite-oxidizing bacteria affiliated with the genus Nitrospira are widespread in environments with elevated temperatures up to 55 °C in Asia, Europe, and Australia. However, until now, no thermophilic pure cultures of Nitrospira were available, and the physiology of these bacteria was mostly uncharacterized. Here, we report on the isolation and characterization of a novel thermophilic Nitrospira strain from a microbial mat of the terrestrial geothermal spring Gorjachinsk (pH 8.6; temperature 48 °C) from the Baikal rift zone (Russia). Based on phenotypic properties, chemotaxonomic data, and 16S rRNA gene phylogeny, the isolate was assigned to the genus Nitrospira as a representative of a novel species, for which the name Nitrospira calida is proposed. A highly similar 16S rRNA gene sequence (99.6% similarity) was detected in a Garga spring enrichment grown at 46 °C, whereas three further thermophilic Nitrospira enrichments from the Garga spring and from a Kamchatka Peninsula (Russia) terrestrial hot spring could be clearly distinguished from N. calida (93.6-96.1% 16S rRNA gene sequence similarity). The findings confirmed that Nitrospira drive nitrite oxidation in moderate thermophilic habitats and also indicated an unexpected diversity of heat-adapted Nitrospira in geothermal hot springs.  相似文献   

12.
The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms.  相似文献   

13.
Aims: The purpose of this work was to investigate microbial ecology of nitrifiers at the genus level in a typical full-scale activated sludge plant. Methods and Results: Grab samples of mixed liquor were collected from a plug-flow reactor receiving domestic wastewater. Fluorescent in situ hybridization technique (FISH) was used to characterize both ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in combination with Confocal Scanning Laser Microscope (CSLM). Fluorescently labelled, 16S rRNA-targeted oligonucleotide probes were used in this study. Both Nitrosomonas and Nitrosospira genera as AOB and Nitrobacter and Nitrospira genera as NOB were sought with genus specific probes Nsm156, Nsv443 and NIT3 and NSR1156, respectively. Conclusions: It was shown that Nitrosospira genus was dominant in the activated sludge system studied, although Nitrosomonas is usually assumed to be the dominant genus. At the same time, Nitrobacter genus was detected in activated sludge samples. Significance and Impact of the Study: Previous studies based on laboratory scale pilot plants employing synthetic wastewater suggested that only Nitrospira are found in wastewater treatment plants. We have shown that Nitrobacter genus might also be present. We think that these kinds of studies may not give a valid indication of the microbial diversity of the real full-scale plants fed with domestic wastewater.  相似文献   

14.
Changes in the fractions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in two laboratory-scale reactors were investigated using 16S rRNA probe hybridizations. The reactors were operated in intermittent aeration mode and different aeration cycles to treat anaerobically digested swine wastewater with ammonia concentrations up to 175 mg NH(3)-N/L. High ammonia removals (>98.8%) were achieved even with increased nitrogen loads and lower aeration: non-aeration time ratios of 1h:3h. Nitrosomonas/Nitrosococcus mobilis were the dominant ammonia-oxidizing bacteria in the reactors. Nitrospira-like organisms were the dominant nitrite-oxidizing bacteria during most of the investigation, but were occasionally outcompeted by Nitrobacter. High levels of nitrifiers were measured in the biomass of both reactors, and ammonia-oxidizing bacteria and nitrite-oxidizing bacterial levels adjusted to changing aeration: non-aeration time ratios. Theoretical ammonia-oxidizer fractions, determined by a mathematical model, were comparable to the measured values, although the measured biomass fractions were different at each stage while the theoretical values remained approximately constant. Stable ammonia removals and no nitrite accumulation were observed even when rRNA levels of ammonia oxidizers and nitrite-oxidizers reached a minimum of 7.2% and 8.6% of total rRNA, respectively. Stable nitrogen removal performance at an aeration: non-aeration ratio of 1h:3h suggests the possibility of significant savings in operational costs.  相似文献   

15.
The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio- and Desulfobulbus-related strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N.B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ.  相似文献   

16.
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.  相似文献   

17.
Carolina bays are naturally occurring shallow elliptical depressions largely fed by rain and shallow ground water. To identify members of the domain Bacteria which inhibit such an environment, we used PCR to construct a library of 16S rRNA genes (16S rDNAs) cloned from DNA extracted from the sediments of Rainbow bay, located on the Savannah River Site, near Aiken, S.C. Oligonucleotides complementary to conserved regions of 16S rDNA were used as primers for PCR, and gel-purified PCR products were cloned into vector pGEM-T. Partial sequencing of the cloned 16S rDNAs revealed an extensive amount of phylogenetic diversity within this system. Of the 35 clones sequenced, 32 were affiliated with five bacterial groups: 11 clustered with the Proteobacteria division (including members of the alpha, beta, and delta subdivisions), 8 clustered with the Acidobacterium subdivision of the Fibrobacter division (as categorized by the Ribosomal Database Project's taxonomic scheme, version 5.0), 7 clustered with the Verrucomicrobium subdivision of the Planctomyces division, 3 clustered with the gram-positive bacteria (Clostridium and relatives subdivision), and 3 clustered with the green nonsulfur bacteria. One sequence branched very deeply from the Bacteria and was found not to be associated with any of the major divisions when phylogenetic trees were constructed. Two clones did not consistently cluster with specific groups and may be chimeric sequences. None of the clones exhibited an exact match to any of the 16S rDNA sequences deposited in the databases, suggesting that most of the bacteria in Rainbow Bay are novel species. In particular, the clones related to the Acidobacterium subdivision and the Verrucomicrobium subdivision confirm the presence of novel taxa discovered previously in other molecular surveys of this type.  相似文献   

18.
Comparative analysis of 16S rRNA sequences shows that the family Spirosomaceae belongs within the eubacterial phylum defined by the flavobacteria and bacteriodes. Its constituent genera, Spirosoma, Flectobacillus, and Runella form a monophyletic grouping therein. The phylogenetic assignment is based not only upon evolutionary distance analysis, but also upon sequence signatures and higher order structural synapomorphies in 16S rRNA. Another genus peripherally associated with the Spirosomaceae, Ancylobacter ("Microcyclus"), does not cluster with the flavobacteria and their relatives, but rather belongs to the alpha subdivision of the purple bacteria.  相似文献   

19.
Theoretical evaluation of the content of oligonucleotide triplets AAA, CCC, and UAU in 16S rRNAs of anoxygenic phototrophic bacteria (genera Chlorobium; Chloroflexus; Chromatium: Rhodopseudomonas) and nitrifying bacteria (genera Nitrosococcus, Nitrosomonas, Nitrosolobus, Nitrosovibrio, Nitrospira, Nitrospina, Nitrobacter) showed that the number of the AAA, CCC or UAU triplets in 16S rRNAs specifically corresponds to the genus and species of bacteria. The ratio of AAA and CCC triplet numbers in the sequences of 16S rRNA (AAA/CCC) of anoxygenic phototrophic bacteria was within the range of 0.61 to 2.03, and the ratio of AAA and UAU (AAA/UAU) triplet numbers in the sequence of 16S rRNA was within the range of 2.88 to 12.00. The regions of any genus within the AAA/CCC and AAA/UAU axes did not overlap. The combination of the numbers of nucleotide triplets in 16S rRNA is genus-specific character. The similar data were obtained in the study of a physiological group of nitrifying bacteria. The range of AAA/UAU ratio was from 1.8 to 9.0, and range of AAA/CCC was from 0.9 to 2.6 for this taxon. The number of triplets in 16S rRNAs of the studied taxa was genus- and species-specific character. The biological significance of these data is the evidence that not only the sequence but the number of nucleotide triplets in 16S rRNAs reflects the phylogeny of corresponding taxa.  相似文献   

20.
5S rRNA sequences were determined for the myxobacteria Cystobacter fuscus, Myxococcus coralloides, Sorangium cellulosum, and Nannocystis exedens and for the radioresistant bacteria Deinococcus radiodurans and Deinococcus radiophilus. A dendrogram was constructed by using weighted pairwise grouping based on these and all other previously known eubacterial 5S rRNA sequences, and this dendrogram showed differences as well as similarities compared with results derived from 16S rRNA analyses. In the dendrogram, Deinococcus 5S rRNA sequences clustered with 5S rRNA sequences of the genus Thermus, as suggested by the results of 16S rRNA analyses. However, in contrast to the 16S rRNA results, the Deinococcus-Thermus cluster divided the 5S rRNA sequences of the alpha subdivision of the class Proteobacteria from the 5S rRNA sequences of the beta and gamma subgroups of the Proteobacteria. The myxobacterial 5S rRNA sequence data failed to confirm the existence of a delta subgroup of the class Proteobacteria, which was suggested by the results of 16S rRNA analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号