首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of ligninolytic and cellulolytic enzymes, such as laccase, lignin peroxidase, manganese peroxidase, carboxymethylcellulase (CMCase), and filter paper activity (FPA), in the decomposition process of leaf litter driven by 6 soil-inhabiting fungi imperfecti was studied under solid-state fermentations. All the tested fungi exhibited varied production profiles of lignocellulolytic enzymes and each caused different losses in total organic matter (TOM) during decomposition. Based on the results, the 6 fungi could be divided into 2 functional groups: Group 1 includes Alternaria sp., Penicillium sp., Acremonium sp., and Trichoderma sp., and Group 2 includes Pestalotiopsis sp. and Aspergillus fumigatus. Group 1, with higher CMCase and FPA activities, showed a higher decomposition rate than the fungi of Group 2 over the first 16 d, and thereafter the cellulolytic activities and decomposition rate slowed down. Group 2 showed the maximum and significantly higher CMCase and FPA activities than those of the Group 1 fungi during the later days. This, combined with the much higher laccase activity, produced a synergistic reaction that led to a much faster average mass loss rate. These results suggest that the fungi of Group 1 are efficient decomposers of cellulose and that the fungi of Group 2 are efficient decomposers of lignocellulose. During cultivation, Pestalotiopsis sp. produced an appreciable amount of laccase activity (0.56+/-0.09 U/ml) without the addition of inducers and caused a loss in TOM of 38.2%+/-3.0%, suggesting that it has high potential to be a new efficient laccase-producing fungus.  相似文献   

2.
Nineteen filamentous fungi, isolated from estuarine sediments in Brazil, were screened for degradation of polycyclic aromatic hydrocarbons (PAH). The fungal isolates were incubated with pyrene. The cultures were extracted and metabolites in the extracts were detected by high performance liquid chromatography (HPLC) and u.v. spectral analyses. Six fungi were selected for further studies using [4,5,9,10-14C]pyrene. Cyclothyrium sp., Penicillium simplicissimum, Psilocybe sp., and a sterile mycelium demonstrated the ability to transform pyrene. Cyclothyrium sp. was the most efficient fungus, transforming 48% of pyrene to pyrene trans-4,5-dihydrodiol, pyrene-1,6-quinone, pyrene-1,8-quinone and 1-hydroxypyrene. This fungus was also evaluated with a synthetic mixture of PAH. After 192 h of incubation, Cyclothyrium sp. was able to degrade simultaneously 70, 74, 59 and 38% of phenanthrene, pyrene, anthracene and benzo[a]pyrene, respectively.  相似文献   

3.
Numerous endoxylanases from mesophilic fungi have been purified and characterized. However, endoxylanases from cold-adapted fungi, especially those from Antarctica, have been less studied. In this work, a cDNA from the Antarctic fungus Cladosporium sp. with similarity to endoxylanases from glycosyl hydrolase family 10, was cloned and expressed in Pichia pastoris. The pure recombinant enzyme (named XynA) showed optimal activity on xylan at 50 °C and pH 6–7. The enzyme releases xylooligosaccharides but not xylose, indicating that XynA is a classical endoxylanase. The enzyme was most active on xylans with high content of arabinose (rye arabinoylan and wheat arabinoxylan) than on xylans with low content of arabinose (oat spelts xylan, birchwood xylan and beechwood xylan). Finally, XynA showed a very low thermostability. After 20–30 min of incubation at 40 °C, the enzyme was completely inactivated, suggesting that XynA would be the most thermolabile endoxylanase described so far in filamentous fungi. This is one of the few reports describing the heterologous expression and characterization of a xylanase from a fungus isolated from Antarctica.  相似文献   

4.
Penicillum sp. 40, which can grow in an extremely acidic medium at pH 2.0 was screened from an acidic soil. This fungus produces xylanases when grown in a medium containing xylan as a sole carbon source. A major xylanase was purified from the culture supernatant of Penicillium sp. 40 and designated XynA. The molecular mass of XynA was estimated to be 25,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. XynA has an optimum pH at 2.0 and is stable in pH 2.0-5.0. Western blot analysis using anit-XynA antibody showed that XynA was induced by xylan and repressed by glucose. Also, its production was increased by an acidic medium. The gene encoding XynA (xynA) was isolated from the genomic library of Penicillium sp. 40. The structural part of xynA was found to be 721 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynA was interrupted by a single intron which was 58 bp in size and encoded 221 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynA had a signal peptide composed of 31 amino acids. The molecular mass caliculated from the deduced amino acid sequence of XynA is 20,713. This is lower than that estimated by gel electrophoresis, suggesting that XynA is a glycoprotein. The predicted amino acid sequence of XynA has strong similarity to other family xylanases from fungi.  相似文献   

5.
Staphylococcal food poisoning associated with fermented sausages has been a recurring problem. By testing for thermonuclease by direct application of sausage casing disks on the surface of thermonuclease assay agar plates, possible Staphylococcus aureus growth in fermented sausages could be detected simply and rapidly. Koupal-Deibel deoxyribonucleic acid agar was somewhat superior to toluidine blue deoxyribonucleic acid agar for thermonuclease assay of fermented sausage casings. The sensitivity of the thermonuclease casing test was comparable to that of the extraction procedure, and the thermonuclease casing test results were in complete agreement with the thermonuclease assay results by the extraction procedure. The thermonuclease casing test offers government and industry laboratories a useful screening tool which could significantly reduce the problem of staphylococcal enterotoxins in fermented sausages.  相似文献   

6.
Flue-cured tobacco inoculated in the field with A. amstelodami, A. flavus, A. ochraceus, A. repens, A. ruber, and a species of Penicillium was rarely invaded by these fungi. Regardless of inoculum, the predominant fungi reisolated from green tissue were species of Alternaria and Cladosporium. After curing, A. repens, A. niger, and species of Alternaria and a species of Penicillium were the most commonly isolated fungi. The fungus used as inoculum was not the predominant fungus reisolated from green or cured tissue. Conditions during handling and storage prior to marketing probably determine when storage fungi become associated with the leaf and which species becomes predominant.  相似文献   

7.
The phosphate solubilizing fungi Penicillium radicum, Penicillium bilaiae (strain RS7B-SD1), and an unidentified Penicillium sp. designated strain KC6-W2 were tested for their ability to increase the growth and phosphorus (P) nutrition of wheat, medic, and lentil in three soils of neutral to alkaline pH reaction. The strongest plant growth promoting (PGP) strain was Penicillium sp. KC6-W2, which stimulated significant increases in shoot growth and dry mass in seven of the nine experiments conducted. Levels of PGP by Penicillium sp. KC6-W2 ranged from 6.6% to 19% and were associated with increased uptake of P to the shoot. The PGP properties of Penicillium sp. KC6-W2 were evident on each of the three different plant species and soil types, a level of reliability not observed in other strains tested. Inoculation of seed with P. radicum increased lentil growth by 5.5% (P < 0.05) in soil from Tarlee but did not affect plant growth in the eight other experiments. Inoculation of plant seed with P. bilaiae RS7B-SD1 resulted in significant PGP in two of the nine experiments conducted. However, when significant, stimulation of PGP by P. bilaiae RS7B-SD1 was strong and resulted in increases in medic dry matter (19%) and lentil shoot dry matter (15%). A soil microcosm experiment investigated the effect of Penicillium fungi on cycling of soil P. Penicillium bilaiae RS7B-SD1 was the only fungus to significantly increase HCO3-extractable P (23% increase; P < 0.05). Production of phosphatase enzymes was not associated with increased HCO3-extractable P. Addition of carbon in the form of ryegrass seed significantly increased microbial respiration and movement of P to the microbial biomass (P < 0.05), but these parameters were irrespective of Penicillium treatment. This work has established the potential for use of Penicillium inoculants to increase plant growth on alkaline soils in Australia. The role of Penicillium fungi in plant P uptake and soil P cycling requires further exploration.  相似文献   

8.
The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as an endophyte from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as a substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds resulting from lipase and SAM activities were also detected. The biotransformation procedures were also applied to a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all of the fungi tested produced 3-hydroxy-1-indanone..  相似文献   

9.
Numerous species of filamentous fungi were isolated from lemon on different plantations in the province of Tucuman, Argentina. The techniques suggested by the Subcommittee of Antifungal Susceptibility of the National Committee for Clinical Laboratory Standards, (USA) were adapted. The effect of three different concentrations of the fungicides imazalil, guazatine, SOPP and thiabendazole on the fungi Fusarium oxysporum, Fusarium moniliforme, Aspergillus niger, Aspergillus flavus, Aspergillus clavatus, Geotrichum candidum, Rhizopus sp, Penicillium sp, Penicillium digitatum and Mucor sp were studied. All the tested strains were resistant to thiabendazole. We assayed a mixture of SOPP (5%), guazatine (350 ppm) and imazalil (100 ppm), which showed a synergic effect on Rhizopus sp. Mucor sp was the only fungus resistant to the four fungicides tested as well as to the above mentioned mixture.  相似文献   

10.
We have screened 766 strains of fungi from the BIOTEC Culture Collection (BCC) for xylanases working in extreme pH and/or high temperature conditions, the so-called extreme xylanases. From a total number of 32 strains producing extreme xylanases, the strain BCC7928, identified by using the internal transcribed spacer (ITS) sequence of rRNA to be a Marasmius sp., was chosen for further characterization because of its high xylanolytic activity at temperature as high as 90 degrees C. The crude enzyme possessed high thermostability and pH stability. Purification of this xylanase was carried out using an anion exchanger followed by hydrophobic interaction chromatography, yielding the enzyme with >90% homogeneity. The molecular mass of the enzyme was approximately 40 kDa. The purified enzyme retained broad working pH range of 4-8 and optimal temperature of 90 degrees C. When using xylan from birchwood as substrate, it exhibits Km and Vmax values of 2.6 +/- 0.6 mg/ml and 428 +/- 26 U/mg, respectively. The enzyme rapidly hydrolysed xylans from birchwood, beechwood, and exhibited lower activity on xylan from wheatbran, or celluloses from carboxymethylcellulose and Avicel. The purified enzyme was highly stable at temperature ranges from 50 to 70 degrees C. It retained 84% of its maximal activity after incubation in standard buffer containing 1% xylan substrate at 70 degrees C for 3 h. This thermostable xylanase should therefore be useful for several industrial applications, such as agricultural, food and biofuel.  相似文献   

11.
The study of the secondary metabolites of the relict strain Penicillium citrinum VKM FW-800 isolated from ancient Arctic permafrost sediments showed that this fungus produces agroclavine-1 and epoxyagroclavine-1, which are rare ergot alkaloids with the 5R,10S configuration of the tetracyclic ergoline ring system. The production of the alkaloids by the fungus showed a biphasic behavior, being intense in the phase of active growth and slowing down in the adaptive lag phase and in the stationary growth phase. The addition of zinc ions to the incubation medium led to a fivefold increase in the yield of the alkaloids. The alkaloids-producing Penicillium fungi isolated from different regions exhibited the same tendencies of growth and alkaloid production.  相似文献   

12.
Renewable natural resources such as xylans are abundant in many agricultural wastes. Penicillium sp. AHT-1 is a strong producer of xylanolytic enzymes. The sequential activities of its xylanase, alpha-L-arabinofuranosidase, and beta-xylosidase on model hemicellulose oat-spelt xylan was investigated. Optimum production of the enzymes was found in culture containing oat-spelt xylan at 30 degrees C and initial pH 7.0 after 6 days. The enzymes were partially purified by ammonium sulphate fractionation and anion-exchange chromatography on DEAE-Toyopearl 650 S. The apparent molecular mass was 21 kDa, and the protein displayed an "endo" mode of action. The xylanase exhibited glycotansferase activity. It synthesized higher oligosaccharides from the initial substrates, and xylotriose was the shortest unit of substrate transglycosylated. Xylanolytic enzymes (enzyme mixture) produced by this Penicillium sp. interacted cooperatively and sequentially in the hydrolysis of oat-spelt xylan in the following order: alpha-L-arabinofuranosidase --> xylanase --> beta-xylosidase. All three enzymes exhibited optimal activity under the same conditions (temperature, pH, cultivation), indicating that they alone are sufficient to completely depolymerize the test xylan. Results indicate that the xylanolytic enzyme mixture of Penicillium sp. AHT-1 could be useful for bioconversion of xylan-rich plant wastes to value-added products.  相似文献   

13.
Several fungi (Aspergillus niger, A. terreus, Cochliobolus specifer, Myrothecium verrucaria, Rhizoctonia solani, Spicaria fusispora, Penicillium sp., and Gliocladium sp.) were isolated from decomposing wheat straw and tested for their ability to utilize whole straw and its components, holocellulose (hemicellulose and cellulose) and cellulose, for the production of single-cell protein (SCP). It was found that C. specifer was the most efficient fungus for protein synthesis with the three substrates. Using potassium nitrate as N source in mixtures of 0.04 g N/g substrate (0.04% wt./vol.) at pH 4.5, it was found that incubation periods of 3, 4, and 5 days were optimal for protein production on cellulose and holocellulose fractions, and whole straw, respectively. Whole native straw was found to be the most recalcitrant to bioconversion into SCP; however, protein production was almost doubled when the lignin component was removed using a mixture of sodium chlorite and acetic acid.  相似文献   

14.
AIMS: To determine the effect of environmental conditions on the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and to assess the potential use of these enzymes in the hydrolysis of lignocellulose material. METHODS AND RESULTS: The production of extracellular lignocellulose-degrading enzymes, endoxylanase, endoglucanase and peroxidase during the growth of Streptomyces sp. F2621 in basal salts-yeast extract medium containing different carbon sources and the effect of a number of environmental parameters (e.g. carbon sources and concentrations, pH and temperature) were investigated. The highest endoxylanase (22.41 U ml(-1)) and peroxidase (0.58 U ml(-1)) activities were obtained after 2-4 days of incubation at 30 degrees C in a basal salts medium containing 0.4% (w/v) oat spelt xylan and 0.6% (w/v) yeast extract, corresponding to C : N ratio of 6 : 1. Cell-free extracellular enzyme preparations from the strain were capable of releasing both sugar and aromatic compounds during incubation with eucalyptus paper pulp, straw and xylan. Overall, 9.3% hydrolysis of xylan occurred after 24-h incubation. However the rates of hydrolysis of paper pulp and straw were approximately twofold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate (24.5% and 16.3%, respectively) was greater than xylan hydrolysis. CONCLUSIONS: The high levels of enzyme production achieved under batch cultivation conditions, coupled with no significant production of endoglucanase during the growth phase of organism and the release of both sugar and aromatic compounds from paper pulp and straw signify the suitability for these enzymes for industrial applications such as pulp and paper production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the environmental conditions for the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and suggest the use of streptomycetes and/or their enzymes in industrial processes.  相似文献   

15.
内生青霉菌纤维素酶辅助提取槐米总黄酮   总被引:1,自引:0,他引:1  
研究内生青霉菌(Penicillium sp.B-4)胞外纤维素酶在槐米总黄酮提取中的辅助应用。内生青霉菌在起始pH4,5的综合马铃薯培养基中,150r/min,40℃下摇瓶,培养7d,具有较高的纤维素酶比活力(3.57U/mL)。槐米干粉投入青霉菌发酵液中进行酶解处理,比较酶料比、酶解温度、酶解时间和酶解液pH对槐米总黄酮提取率的影响,发现槐米干粉以酶料比40:1(mL/g)加入粗酶液中,在pH4.5、温度40℃下酶解处理1h后,黄酮提取率可达12.2%,比常规提取率增加了38.7%。内生菌纤维素酶辅助提取法为槐米黄酮提取的可行新方法。  相似文献   

16.
The ability of several fungal strains to degrade and to detoxify cork boiling wastewaters was investigated. The fungal strains used in this work were Sporothrix sp., Trichoderma koningii, Chrysonilia sitophila and Penicillium glabrum isolated from cork bark as well as Fusarium flocciferum and Phanerochaete chrysosporium. The results obtained in the degradation experiments carried out with each fungus showed that all fungi display similar abilities, with a chemical oxygen demand reduction of 54.2 % (± 4.7 %) attained within five days of incubation. F. flocciferum presented the highest value for the reduction of chemical oxygen demand of 62 %. In addition, a rise in pH values of around 3 units was detected with all the strains, except for Penicillium glabrum. Toxicity tests performed on Vibrio fischeri revealed that fungal treatment of the wastewaters causes the complete loss of toxicity in the cases of Sporothrix sp., T. koningii, P. chrysosporium and F. flocciferum. The other two tested strains were also able to detoxify the raw wastewaters, causing a ten‐fold decrease in toxicity. The results obtained in sequential biodegradation experiments with different pairs of fungi showed that although the increment in the COD reduction did not exceed 10 %, an important reduction in toxicity and a pH rise were attained.  相似文献   

17.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

18.
The electrophoretic karyotype of the filamentous fungus Penicillium purpurogenum has been resolved. Using contour-clamped homogeneous electric field gel electrophoresis, five chromosomal bands were separated, with estimated sizes of 7.1, 5.2, 3.7, 2.9 and 2.3 Mbp, giving a total genome size of 21.2 Mbp. To our knowledge, this is the smallest Penicillium genome determined so far. By Southern blots and using homologous probes, the chromosomal location of five xylanolytic genes from P. purpurogenum was determined: axeI (acetyl xylan esterase I), xynB (endoxylanase B) and abf1 (arabinofuranosidase 1) in chromosome I, xynA (endoxylanase A) in chromosome II, and axeII (acetyl xylan esterase II) in chromosome III. This is the first study where the location of xylanase genes in a Penicillium genome has been established.  相似文献   

19.
Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.  相似文献   

20.
AIMS: The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). METHODS AND RESULTS: Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. CONCLUSIONS: Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. SIGNIFICANT AND IMPACT OF THE STUDY: The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号