首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new vanadyl complex with the formula VO(L1)2, where L1=3-amino-6(7)-chloroquinoxaline-2-carbonitrile N(1), N(4)-dioxide, has been synthesized and characterized by elemental analyses, conductometry, fast atom bombardment mass spectroscopy (FAB-MS) and electronic, Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. Results were compared with those previously reported for analogous vanadium complexes with other 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives as ligands. As an effort to develop novel metal-based selective hypoxia-cytotoxins and to improve bioavailability and pharmacological and toxicological properties of aminoquinoxaline carbonitrile N-dioxides bioreductive prodrugs, the new complex and VO(L)2 complexes, with L=3-amino-6(7)-bromoquinoxaline-2-carbonitrile N1,N4-dioxide (L2) and 3-amino-6(7)-methylquinoxaline-2-carbonitrile N1,N4-dioxide (L3), were subjected to cytotoxic evaluation in V79 cells in hypoxic and aerobic conditions. The complexes resulted in vitro more potent cytotoxins than the free ligands (i.e. potencies P(VO(L1)2)=3.0, P(L1)=9.0 microM) and Tirapazamine (P=30.0 microM) and showed excellent selective cytotoxicity in hypoxia, being no cytotoxic in oxia. In addition, the solubility in hydrophilic solvents resulted significantly higher for the vanadyl complexes than for the free ligands. These results could be indicative that complexation of the quinoxaline-2-carbonitrile N1,N4-dioxide derivatives with vanadium could improve their bioavailability. In addition, a new aspect of the series has been investigated. A detailed comparison of the electrochemical behavior of the free ligands and the complexes has been performed searching for a correlation between reduction potentials of the complexes and their activities and hypoxia selectivities.  相似文献   

2.
C(2)-Symmetric chiral diethoxyphosphoramide 4, diethoxythiophosphoramide 5, and diisopropoxyphosphoramide 6 of (1R, 2R)-1,2-diaminocyclohexane were prepared by the reactions of diethoxyphosphinic chloride, diethoxythiophosphinic chloride, and diisopropoxyphosphinic chloride with (1R, 2R)-1,2-diaminocyclohexane, respectively. They were used as catalytic chiral ligands in the asymmetric addition reactions of diethylzinc to aldehydes in the presence of titanium(IV) isopropoxide to give the corresponding sec-alcohols with 43-70% ee. Chiral ligands 4 and 5 gave the sec-alcohols with opposite absolute configuration.  相似文献   

3.
3-D-Quantitative structure--activity relationships of N-(3-acyloxy-2-benzylpropyl)-N'-dihydroxytetrahydro-benzazepine and tetrahydroisoquinoline and N-(3-acyloxy-2-benzylpropyl)-N'-(4-hydroxy-3-methoxybenzyl) thiourea analogues as potent vanilloid receptor ligands were investigated using the CoMFA and the COMSIA methods. The best CoMFA model obtained in this study from 29 substituted thiourea analogues is a two-component model with the following statistics. R(2)((cv))=0.407 and RMSE((cv))=0.532 for the cross-validation, and R(2)=0.705 and RMSE=0.375 for the fitted. The best COMSIA model obtained from the same 29 compounds is a two-component model with the following statistics: R(2)((cv))=0.336 and RMSE((cv))=0.563 for the cross-validation, and R(2)=0.693 and RMSE=0.382 for the fitted.  相似文献   

4.
Synthesis of a series of pure S-(+)-2beta-carboalkoxy-3alpha-[bis(4-fluorophenyl)methoxy]tropanes (>99% ee) was achieved by employing a chiral amine-induced asymmetric reaction of tropinone with methyl cyanoformate as the key step. In this series, all of the S-(+)-enantiomers were 2-fold more potent than their racemic mixtures and all displayed high-affinity binding for DAT (K(i)=13-40 nM). These data support previous findings of significant divergence in structural requirements for high-affinity DAT binding among tropane-based inhibitors. Furthermore, the 2-substituent in the 3alpha-[bis(4-fluorophenyl)methoxy]tropane series is well tolerated at the DAT but not at SERT (K(i)=690-2040 nM), or muscarinic M(1) receptors (K(i)=133-4380 nM) resulting in highly selective DAT ligands that may provide new leads toward a cocaine-abuse therapeutic.  相似文献   

5.
6.
The asymmetric synthesis of novel, potent phosphoramidate alpha(2-6)sialyltransferase transition-state analogue inhibitors such as (R)-9 (K(i)=68 microM) is described, via condensation of cytidine phosphitamide 6 with key chiral, non-racemic alpha-aminophosphonates, prepared in >98% ee by Mitsunobu azidation followed by Staudinger reduction of the corresponding chiral, non-racemic alpha-hydroxyphosphonates.  相似文献   

7.
The melanocortin pathway, specifically the melanocortin-4 receptor and the cognate endogenous agonist and antagonist ligands, have been strongly implicated in the regulation of energy homeostasis and satiety. Genetic studies of morbidly obese human patients and normal weight control patients have resulted in the discovery of over 70 human melanocortin-4 receptor (MC4R) polymorphisms observed as both heterozygous and homozygous forms. A number of laboratories have been studying these hMC4R polymorphisms attempting to understand the molecular mechanism(s) that might explain the obese human phenotype. Herein, we have studied 13 polymorphic hMC4Rs that have been identified to possess statistically significant decreased endogenous agonist potency with synthetic peptides and small molecules attempting to identify ligands that can pharmacologically rescue the hMC4R polymorphic agonist response. The ligands examined in this study include NDP-MSH, MTII, Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9), Ac-Anc-DPhe-Arg-Trp-NH2 (amino-2-naphtylcarboxylic acid, Anc, JRH420-12), Ac-His-(pI)DPhe-Arg-Trp-NH2 (JRH322-18), chimeric AGRP-melanocortin based ligands (Tyr-c[Cys-His-DPhe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2, AMW3-130 and Ac-mini-(His-DPhe-Arg-Trp)-hAGRP-NH2, AMW3-106), and the small molecules JB25 and THIQ. The hMC4R polymorphisms included in this study are S58C, N97D, I102S, L106P, S127L, T150I, R165Q, R165W, L250Q, G252S, C271Y, Y287Stop, and I301T. These studies resulted in the NDP-MSH, MTII, AMW3-130, THIQ, and AMW3-106 ligands possessing nanomolar to subnanomolar agonist potency at the hMC4R polymorphisms examined in this study. Thus, these ligands could generically rescue the potency and stimulatory response of the abnormally functioning hMC4Rs studied and may provide tools to further clarify the molecular mechanism(s) involving these receptor modifications.  相似文献   

8.
Hexose-6-phosphate dehydrogenase (H6PDH) influences 11β-hydroxysteroid dehydrogenase activity, a key enzyme in the peripheral metabolism of cortisol that modulates insulin sensitivity in adipose tissue. To study the associations of R453Q and D151A polymorphisms in the H6PDH gene (H6PD) with polycystic ovary syndrome (PCOS) and their influence on clinical and metabolic variables, we genotyped 237 patients with PCOS and 135 control women for the R453Q (rs6688832) and D151A (rs34603401) variants in H6PD. The R453Q genotypes were distributed differently in patients and controls (χ(2)=9.55, P=0.002). Genotypes of D151A were distributed evenly in women with PCOS and controls, but showed a different distribution in non-obese and obese women (χ(2)=3.95, P=0.047), especially within the PCOS subgroup (χ(2)=4.65, P=0.031). A backward stepwise likelihood ratio logistic regression model (Nagelkerke's R(2)=0.490; χ(2)=164; P<0.0001) retained free testosterone (OR=1.13; 95% CI: 1.10-1.17) and H6PD Q453 alleles (OR=0.46; 95% CI: 0.27-0.79) as statistically significant predictors for PCOS, whereas homeostasis model assessment of insulin resistance and the H6PD D151A variant were excluded by the model. Both H6PD variants were associated with several phenotypic variables, including fasting insulin, homeostasis model assessment of insulin resistance and androstenedione levels. In summary, the R453Q and D151A variants of the H6PD gene are associated with PCOS and obesity, respectively, and may contribute to the PCOS phenotype by influencing obesity, insulin resistance and hyperandrogenism.  相似文献   

9.
The reaction of copper(II) complexes supported by a series of beta-diketiminate ligands ((R1,R2)L, [(Dipp)N-C(R(2))-C(R(1))-C(R(2))-N(Dipp)](-), Dipp=2,6-diisopropylphenyl; see ) and H(2)O(2) has been examined spectroscopically at a low temperature. The beta-diketiminatocopper(II) complexes with R(2)=H (no substituent on the beta-carbon) provided a copper-oxygen intermediate that exhibited the same spectroscopic features as those of the bis(mu-oxo)dicopper(III) complex generated by the reaction of corresponding beta-diketiminatocopper(I) complex and O(2). On the other hand, the beta-diketiminatocopper(II) complexes with methyl substituent on the beta-carbon (R(2)=Me) did not produce such an intermediate in the same reaction. The beta-diketiminatocopper(II) complexes carrying an electron-withdrawing substituent on the alpha-carbon (R(1)=NO(2) or CN) but no beta-substituent (R(2)=H) exhibited a high catalytic activity in the oxygenation reaction of alkanes with H(2)O(2). Mechanism of the catalytic oxygenation reaction as well as the substituent effects of the ligands on the copper(II)-H(2)O(2) reactivity is discussed.  相似文献   

10.
Synthesis of (2R)-2-carboxymethyl-3-(4-(phosphonomethyl)phenyl) proprionic acid (5) in tert-butyl-protected form (6) and its use for the preparation of a Grb2 SH2 domain-directed tripeptide (8a) is reported. In extracellular ELISA-based assays, 8a exhibits potent Grb2 SH2 domain binding affinity (IC(50)=8 nM). Against cultures of MDA-MB-453 breast cancer cells, which over-express erbB-2 tyrosine kinase, 8a is also antimitogenic at concentrations equivalent to those required to inhibit intracellular association of Grb2 protein with phosphorylated p185(erbB-2) protein (IC(50)=8 microM). Analogue 6 may be useful for the preparation of a variety of phosphatase-stable SH2 domain-directed ligands.  相似文献   

11.
As ATP-gated ion channels, P2X4 receptors (P2X4R) of microglial cells play a crucial role in central nervous system (CNS) inflammation. In this study, we used rat microglial cell cultures to examine P2X4R expression in response to stimulation by combination of toll-like receptors (TLRs) and nucleotide-binding oligomerization domain 2 (NOD2) receptors. Various TLR1-9 ligands and NOD2 agonist muramyldipeptide (MDP) were investigated. Our results showed that certain combination of ligands had additive effects on upregulating microglial P2X4R at both mRNA and protein levels, and induced nitric oxide increase and tumor necrosis factor-α production. Thus TLRs and NOD2 combinations are contributors to the signaling cascades resulting in purinergic microglial activation.  相似文献   

12.
Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Replacements for the benzodiazepine core of an earlier lead structure 1 including 5-, 6-, and 7-membered lactams were explored. Within the 7-membered ring scaffold, phenyl substitution at various positions afforded the potent (3R)-amino-(6S)-phenyl caprolactam template. The phenylimidazolinone privileged structure gave additional potency enhancements, as 24 showed good potency in both CGRP binding (K(i)=2 nM) and cAMP (IC(50)=4 nM) assays and was orally bioavailable in rats (27%).  相似文献   

13.
Six yeasts were studied for their ability to reduce ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) stereoselectively. Five species reduced the substrate to ethyl (S)-4-chloro-3-hydroxybutanoate of high (92–99%) optical purity. With glucose-grown cells, substrate reduction could only be demonstrated when growth was oxygen-limited, whereas xylose-grown Pichia capsulata could be grown under conditions of oxygen excess without losing its reducing ability. Zygosaccha-romyces rouxii exhibited high enantioselectivity (≥98% ee (S)-enantiomer) under all conditions tested, whilst in P. capsulata, a novel switch was observed from producing mainly the (R)-enantiomer using glucose as co-substrate to producing mainly the (R)-enantiomer using 2-propanol as co-substrate. This switch was correlated with a change in reduction predominantly from an NADPH-dependent dehydrogenase system to an NADH-dependent system. In the production of ethyl (R)-4-chloro-3-hydroxybutanoate with P. capsulata, the enantioselectivity was also found to depend upon growth conditions. With glucose-grown cells, higher enantioselectivity was observed using cells harvested in stationary phase (93–94% ee) compared with cells harvested in exponential phase (43–60% ee). Growing P. capsulata with xylose rather than glucose as the major source of carbon for growth resulted in an eight-fold increase in the specific rate of ethyl (R)-4-chloro-3-hydroxybutanoate production using 2-propanol as co-substrate, although enantioselectivity was slightly reduced (65–81% ee) compared with the maximum achieved with glucose-grown cells. The effect of growth on xylose could also be correlated with enhanced activity of an NADH-dependent (R)-selective dehydrogenase system.  相似文献   

14.
The mouse macrophage Fc gamma 2b/gamma 1R has previously been purified with the aid of the monoclonal antibody 2.4G2. That this Fc gamma R functions as a ligand-dependent ion channel is supported by the following evidence. Employing [3H]tetraphenylphosphonium ([3H]Ph4P+) as a probe for membrane potential changes in intact cells, we found a biphasic change in membrane potential following treatment with immune complexes, monoclonal antibody 2.4G2 IgG and 2.4G2 Fab-Sephadex particles. We observed an immediate depolarization followed by prolonged hyperpolarization. [3H]Ph4P+ uptake experiments with plasma membrane vesicles prepared from J774 macrophages showed that binding of ligands to the FcR led to transmembrane monovalent cation flow. Similar [3H]Ph4+ uptake experiments were done with phospholipid vesicles containing purified and reconstituted Fc gamma 2b/gamma. Following challenge with specific ligands, transmembrane monovalent cation flow was observed. Purified FcR was reconstituted into planar lipid bilayers; exposure to ligands led to transient bilayer conductance increase. THe conductance change was resolved into single channel events. Quin-2 measurements showed an increase of free cytosolic calcium levels in macrophages following exposure of cells to different ligands of the FcR. An optimal range of calcium was found to be required for phagocytosis, below and above which inhibition of ingestion occurred.  相似文献   

15.
16.
Mikami K  Ueki M  Matsumoto Y  Terada M 《Chirality》2001,13(9):541-544
Chiral tetranuclear Ti cluster, a cubic structure constituted of four Ti atoms and OHs, and six (R)-binaphthols (BINOL) bridged two Ti atoms as ligands, is shown to be a novel chiral Lewis acid catalyst for the [2+3] cycloaddition reaction with nitrones. The chiral Ti clusters with 7,7'-substituted (R)-BINOL ligands was synthesized to give enhanced enantiomeric excesses up to 78% ee.  相似文献   

17.
Racemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-12-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.  相似文献   

18.
Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.  相似文献   

19.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

20.
Further SAR study around the central 1,2-disubstituted phenyl of the previously disclosed Cat K inhibitor (-)-1 has demonstrated that the solvent exposed P2-P3 linker can be replaced by various 5- or 6-membered heteroaromatic rings. While some potency loss was observed in the 6-membered heteroaromatic series (IC(50)=1 nM for pyridine-linked 4 vs 0.5 nM for phenyl-linked (+/-)-1), several inhibitors showed a significantly decreased shift in the bone resorption functional assay (10-fold for pyridine 4 vs 53-fold for (-)-1). Though this shift was not reduced in the 5-membered heteroaromatic series, potency against Cat K was significantly improved for thiazole 9 (IC(50)=0.2 nM) as was the pharmacokinetic profile of N-methyl pyrazole 10 over our lead compound (-)-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号