首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others have found that in these eggs, the intracellular calcium ([Ca(2+)](i)) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca(2+) release is not well known. Here, we investigated if the function of IP(3)R1, the major Ca(2+) release channel at fertilization, was undermined in in vitro-aged mouse eggs. We found that in aged eggs, IP(3)R1 displayed reduced function as many of the changes acquired during maturation that enhance IP(3)R1 Ca(2+) conductivity, such as phosphorylation, receptor reorganization and increased Ca(2+) store content ([Ca(2+)](ER)), were lost with increasing postovulatory time. IP(3)R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP(3)R(1) function and maintained [Ca(2+)](ER) content. Caffeine also maintained mitochondrial membrane potential, as measured by JC-1 fluorescence. We therefore conclude that [Ca(2+)](i) responses in aged eggs are undermined by reduced IP(3)R1 sensitivity, decreased [Ca(2+)](ER) , and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs.  相似文献   

2.
The oocytes of most mammalian species, including mouse and human, are fertilized in metaphase of the second meiotic division. A fertilizing spermatozoon introduces an oocyte-activating factor, phospholipase C zeta, triggering oscillations of the cytoplasmic concentration of free calcium ions ([Ca(2+)](i)) in the oocyte. [Ca(2+)](i) oscillations are essential for the activation of the embryonic development. They trigger processes such as resumption and completion of meiosis, establishment of the block to polyspermy and recruitment of maternal mRNAs necessary for the activation of the embryo genome. Moreover, it has been recently shown that [Ca(2+)](i) oscillations may also influence the development of the embryo. The ability to generate [Ca(2+)](i) oscillations develops in mammalian oocytes during meiotic maturation and requires several cytoplasmic changes, including: 1/ reorganization of endoplasmic reticulum, the main stockpile of calcium in the oocyte, 2/ increase in the number of 1,4,5-inositol triphosphate (IP(3)) receptors, 3/ changes in their biochemical properties (e.g.: sensitivity to IP3), and possibly both 4/ an increase in the concentration of Ca(2+) ions stored in endoplasmic reticulum (ER) and 5/ redistribution of Ca(2+)-binding ER proteins. The aim of this review is to present the state of current knowledge about these processes.  相似文献   

3.
During fertilization of sea urchin eggs, the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) transiently increases (Ca(2+) transient). Increased [Ca(2+)](i) results from a rapid release from intracellular stores, mediated by one or both of two signaling pathways; inositol 1,4,5-trisphosphate (IP(3)) and IP(3) receptor (IP(3)R) or cyclic GMP (cGMP), cyclic ADP-ribose (cADPR) and ryanodine receptor (RyR). During fertilization, cGMP and cADPR increase preceding the Ca(2+) transient, suggesting their contribution to this. If the RyR pathway contributed to the Ca(2+) transient, its Ca(2+) releasing activity would develop in parallel with that of the IP(3) system during maturation of oocytes. Sea urchin oocytes were cultivated in vitro and Ca(2+) transients induced by photolysis of caged IP(3) or caged cADPR were measured during maturation. Oocytes spontaneously began to maturate in seawater. More than 50% of oocytes underwent germinal vesicle breakdown within 25 h and the second meiosis within 35 h, but it took more than 24 h until they became functionally identical to in vivo-matured eggs. Both IP(3) and cADPR induced Ca(2+) transients comparable to those of in vivo-matured eggs later than 24 h from the second meiosis. However, cADPR induced a small Ca(2+) transient even before meiosis, whereas IP(3) and sperm almost did not.  相似文献   

4.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

5.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   

6.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   

7.
The calcium ([Ca(2+)](i)) oscillations associated with mammalian fertilization and required to induce egg activation occur during M-phase stages of the cell cycle. The molecular mechanisms underlying this regulation remain unproven and may be multi-layered. Type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R-1), which mediate [Ca(2+)](i) release during fertilization, have emerged as key regulatory units because they contain multiple phosphorylation consensus sites and undergo changes in cellular location and mass prior to and following fertilization. Hence, control of IP(3)R-1 function together with regulation of PLCzeta activity, the putative sperm factor, may combine to impart cell cycle and species-specific [Ca(2+)](i) oscillations characteristic of mammalian fertilization.  相似文献   

8.
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.  相似文献   

9.
We previously demonstrated in the mouse oocyte that in vivo postovulatory aging significantly suppresses activity of the endoplasmic reticulum (ER) Ca(2+)-ATPase (Igarashi et al. 1997. Mol Reprod Dev 48:383-390). We undertook the present study to further examine the effects of oocyte aging on Ca(2+) release from the inositol 1,4,5-triphosphate (InsP(3))-sensitive Ca(2+) channels of the ER membrane, because not only Ca(2+) reuptake, but also Ca(2+) release from the ER, substantially affect Ca(2+) oscillations in fertilized oocytes. A transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) was induced by photolysis of caged InsP(3) microinjected into the cytoplasm in both fresh (14 hr post hCG) and aged (20 hr or 24 hr post hCG) oocytes, where the maximum rate of increase in [Ca(2+)](i) significantly decreased in the aged oocytes. Reduced ER Ca(2+) release in the aged oocyte may not be attributable to aging-related desensitization of the InsP(3)-sensitive Ca(2+) channels in the ER because concentrations of caged InsP(3) for half maximal [Ca(2+)](i) increase were identical for fresh and aged oocytes. The peak [Ca(2+)](i) response following administration of 5 microM thapsigargin, a specific ER Ca(2+)-ATPase inhibitor, was significantly reduced in the aged oocyte, suggesting reduction of the ER Ca(2+) stores. We conclude from these results that reduction of Ca(2+) release from the InsP(3)-sensitive Ca(2+) stores in the aged oocyte arises from depletion of the ER Ca(2+) stores with aging. These aging-related changes in Ca(2+) release and reuptake may account for alterations in Ca(2+) oscillations in aged fertilized oocytes.  相似文献   

10.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

11.
Intracellular calcium ([Ca(2+)](i)) rises are a hallmark of mammalian fertilization and are associated with normal activation of embryonic development. Injection of mammalian sperm cytosolic factor (SCF) into oocytes has been shown to trigger [Ca(2+)](i) rises similar to those observed during fertilization, and to initiate normal embryonic development. However, Ca(2+) release has also been shown to be associated with cell death, but the mechanisms of the detrimental effects of Ca(2+) stimulation on development have not yet been investigated. Thus, studies were undertaken using SCF to test the effects of [Ca(2+)](i) oscillations on oocyte activation in freshly ovulated and aged oocytes. Injections of 1 mg/ml SCF into freshly ovulated mouse metaphase II oocytes, which evoked Ca(2+) responses with low frequency and short duration, induced normal activation and cleavage to the two-cell stage. Conversely, injection of 15 mg/ml SCF, which triggered high-frequency and persistent Ca(2+) responses, induced abnormal activation that was characterized by abnormal chromatin configurations, inhibition of DNA synthesis, and lack of first mitotic spindle assembly. More importantly, fertilization-like Ca(2+) responses induced by injection of 1 mg/ml SCF triggered cell death, rather than activation, in in vitro-aged oocytes. These oocytes exhibited extensive cytoplasmic and DNA fragmentation that was accompanied by activation of protein caspases, all of which are signs of apoptotic cell death. Fewer similarly aged oocytes that were either unstimulated or activated with 7% ethanol underwent fragmentation. Together, these results suggest that [Ca(2+)](i) oscillations are required to activate freshly ovulated oocytes, but if initiated at abnormally high frequency and duration or if induced in aged oocytes, the [Ca(2+)](i) oscillations may trigger premature termination of embryonic development.  相似文献   

12.
Fertilization competency results from hormone-induced remodeling of oocytes into eggs. The signaling pathways that effect this change exemplify bistability, where brief hormone exposure irrevocably switches cell fate. In Xenopus, changes in Ca(2+) signaling epitomize such remodeling: The reversible Ca(2+) signaling phenotype of oocytes rapidly adapts to support irreversible propagation of the fertilization Ca(2+) wave. Here, we simultaneously resolved IP(3) receptor (IP(3)R) activity with endoplasmic reticulum (ER) structure to optically dissect the functional architecture of the Ca(2+) release apparatus underpinning this reorganization. We show that changes in Ca(2+) signaling correlate with IP(3)R redistribution from specialized ER substructures called annulate lamellae (AL), where Ca(2+) release activity is attenuated, into IP(3)R-replete patches in the cortical ER of eggs that support the fertilization Ca(2+) wave. These data show: first, that IP(3)R sensitivity is regulated with high spatial acuity even between contiguous ER regions; and second, that drastic reorganization of Ca(2+) signaling dynamics can be driven by subcellular redistribution in the absence of changes in channel number or molecular or familial Ca(2+) channel diversity. Finally, these results define a novel role for AL in Ca(2+) signaling. Because AL are prevalent in other scenarios of rapid cell division, further studies of their impact on Ca(2+) signaling are warranted.  相似文献   

13.
Mammalian fertilization is characterized by the presence of long-lasting intracellular calcium ([Ca2+]i) oscillations that are required to induce oocyte activation. One of the Ca2+ channels that may mediate this Ca2+ release is the inositol 1,4, 5-trisphosphate receptor (IP(3)R). Three isoforms of the receptor have been described, but their expression in oocytes and possible roles in mammalian fertilization are not well known. Using isoform-specific antibodies against IP(3)R types 1, 2, and 3 and Western analysis, we determined the isoforms that are expressed in bovine metaphase II oocytes and ovaries. In oocytes, all isoforms are expressed, but type 1 is present in overwhelmingly larger amounts and is likely responsible for the majority of Ca2+ release at fertilization. In ovarian microsomes, all three isoforms appear well expressed, suggesting the participation of all IP(3)R isoforms in ovarian Ca2+ signaling. We then investigated whether the reported cessation/reduction in amplitude of fertilization-associated [Ca2+]i oscillations, which is observed as pronuclear formation approaches, corresponded with down-regulation of the IP(3)R-1 isoform. Fertilization resulted in approximately 40% reduction in the amount of receptor by 16 h postinsemination. In addition, injection of adenophostin A, a potent IP(3)R agonist that elicits high-frequency [Ca2+]i oscillations in mammalian oocytes, induced similar reduction in receptor numbers. Together, these data show that 1) the three IP(3)R isoforms are expressed in bovine oocytes; 2) IP(3)R-1 is likely to mediate most of the Ca2+ release during fertilization; 3) its down-regulation may explain the decline in amplitude of sperm-induced [Ca2+]i rises as fertilization progresses toward pronuclear formation; and 4) agonists of the IP(3)R induce down-regulation of the type-1 receptor in oocytes similar to that evoked by fertilization.  相似文献   

14.
Alpha(1)-aderenoceptor-mediated constriction of rabbit inferior vena cava (IVC) is signaled by asynchronous wavelike Ca(2+) oscillations in the in situ smooth muscle. We have shown previously that a putative nonselective cationic channel (NSCC) is required for these oscillations. In this report, we show that the application of 2-aminoethoxyphenyl borate (2-APB) to antagonize inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) release channels (IP(3)R channels) can prevent the initiation and abolish ongoing alpha(1)-aderenoceptor-mediated tonic constriction of the venous smooth muscle by inhibiting the generation of these intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations. The observed effects of 2-APB can only be attributed to its selective inhibition on the IP(3)R channels, not to its slight inhibition of the L-type voltage-gated Ca(2+) channel and the sarco(endo)plasmic reticulum Ca(2+) ATPase. Furthermore, 2-APB had no effect on the ryanodine-sensitive Ca(2+) release channel and the store-operated channel (SOC) in the IVC. These results indicate that the putative NSCC involved in refilling the sarcoplasmic reticulum (SR) and maintaining the tonic contraction is most likely an SOC-type channel because it appears to be activated by IP(3)R-channel-mediated SR Ca(2+) release or store depletion. This is in accordance with its sensitivity to Ni(2+) and La(3+) (SOC blockers). More interestingly, RT-PCR analysis indicates that transient receptor potential (Trp1) mRNA is strongly expressed in the rabbit IVC. The Trp1 gene is known to encode a component of the store-operated NSCC. These new data suggest that the activation of both the IP(3)R channels and the SOC are required for PE-mediated [Ca(2+)](i) oscillations and constriction of the rabbit IVC.  相似文献   

15.
Changes in cytosolic free calcium ([Ca(2+)](i)) often take the form of a sustained response or repetitive oscillations. The frequency and amplitude of [Ca(2+)](i) oscillations are essential for the selective stimulation of gene expression and for enzyme activation. However, the mechanism that determines whether [Ca(2+)](i) oscillates at a particular frequency or becomes a sustained response is poorly understood. We find that [Ca(2+)](i) oscillations in rat megakaryocytes, as in other cells, results from a Ca(2+)-dependent inhibition of inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. Moreover, we find that this inhibition becomes progressively less effective with higher IP(3) concentrations. We suggest that disinhibition, by increasing IP(3) concentration, of Ca(2+)-dependent inhibition is a common mechanism for the regulation of [Ca(2+)](i) oscillations in cells containing IP(3)-sensitive Ca(2+) stores.  相似文献   

16.
BACKGROUND INFORMATION: The IP(3)R (inositol 1,4,5-trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca(2+) release in virtually all cell types. We have previously demonstrated that caspase-3-mediated cleavage of IP(3)R1 during cell death generates a C-terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP(3)R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. RESULTS: In the present study, we demonstrate that expression of the caspase-3-cleaved C-terminus of IP(3)R1 increased the rate of thapsigargin-mediated Ca(2+) leak and decreased the rate of Ca(2+) uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca(2+) stores. We detected the truncated IP(3)R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP(3)R1 blocked sperm factor-induced Ca(2+) oscillations and induced an apoptotic phenotype. CONCLUSIONS: In the present study, we show that caspase-3-mediated truncation of IP(3)R1 enhanced the Ca(2+) leak from the ER. We suggest a model in which, in normal conditions, the increased Ca(2+) leak is largely compensated by enhanced Ca(2+)-uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca(2+) leak acts as a feed-forward mechanism to divert the cell into apoptosis.  相似文献   

17.
The universal signal for egg activation at fertilization is a rise in cytoplasmic Ca(2+) with defined spatial and temporal kinetics. Mammalian and amphibian eggs acquire the ability to produce such Ca(2+) signals during a maturation period that precedes fertilization and encompasses resumption of meiosis and progression to metaphase II. In Xenopus, immature oocytes produce fast, saltatory Ca(2+) waves that can be oscillatory in nature in response to IP(3). In contrast, mature eggs produce a single continuous, sweeping Ca(2+) wave in response to IP(3) or sperm fusion. The mechanisms mediating the differentiation of Ca(2+) signaling during oocyte maturation are not well understood. Here, I characterized elementary Ca(2+) release events (Ca(2+) puffs) in oocytes and eggs and show that the sensitivity of IP(3)-dependent Ca(2+) release is greatly enhanced during oocyte maturation. Furthermore, Ca(2+) puffs in eggs have a larger spatial fingerprint, yet are short lived compared to oocyte puffs. Most interestingly, Ca(2+) puffs cluster during oocyte maturation resulting in a continuum of Ca(2+) release sites over space in eggs. These changes in the spatial distribution of elementary Ca(2+) release events during oocyte maturation explain the continuous nature and slower speed of the fertilization Ca(2+) wave.  相似文献   

18.
Repetitive Ca(2+) release from the endoplasmic reticulum (ER) is necessary for activation of mammalian eggs. Influx and release of Mn(2+) and Ca(2+) during Ca(2+) oscillations induced by injection of sperm extract (SE) into mouse eggs were investigated by Mn(2+)-quenching of intracellular Fura-2 after adding Mn(2+) to external medium. Mn(2+)/Ca(2+) influx was detected at the resting state. A marked Mn(2+)/Ca(2+) influx occurred during the first Ca(2+) release upon SE injection, and persistently facilitated Mn(2+)/Ca(2+) influx was observed during steady Ca(2+) oscillations. As intracellular Mn(2+) concentration ([Mn(2+)](i)) increased progressively, periodic [Mn(2+)](i) rises appeared, corresponding to each Ca(2+)transient but taking a slower time course. A numerical simulation based on continuous Mn(2+)/Ca(2+) influx-extrusion across the plasma membrane and release-uptake across the ER membrane in a competitive manner mimicked well the Mn(2+) oscillations calculated from experimental data, strongly suggesting that repetitive Mn(2+) release develops after Mn(2+) entry and uptake into the ER. In other experiments, a marked Mn(2+) influx occurred upon Mn(2+) addition to Ca(2+)-free medium after depletion of the ER using an ER Ca(2+) pump inhibitor plus repeated injection of inositol 1,4,5-trisphosphate (InsP(3)). No significant increase in Mn(2+) influx was induced by injection of SE, InsP(3), or Ca(2+), when Ca(2+) release was prevented by pre-injection of an antibody against the InsP(3) receptor. We concluded that Ca(2+) influx is activated during the initial large Ca(2+)release possibly by a capacitative mechanism and kept facilitated during steady Ca(2+) oscillations. The finding that repetitive Mn(2+) release is caused by continuous Mn(2+) entry suggests that continuous Ca(2+) influx may play a critical role in refilling the ER and, thereby, maintaining Ca(2+)oscillations in mammalian fertilization.  相似文献   

19.
We have studied the Ca(2+) leak pathways in the endoplasmic reticulum of pancreatic acinar cells by directly measuring Ca(2+) in the endoplasmic reticulum ([Ca(2+)](ER)). Cytosolic Ca(2+) ([Ca(2+)](C)) was clamped to the resting level by a BAPTA-Ca(2+) mixture. Administration of cholecystokinin within the physiological concentration range caused a graded decrease of [Ca(2+)](ER), and the rate of Ca(2+) release generated by 10 pm cholecystokinin is at least 3x as fast as the basal Ca(2+) leak revealed by inhibition of the endoplasmic reticulum Ca(2+)-ATPase. Acetylcholine also evokes a dose-dependent decrease of [Ca(2+)](ER), with an EC(50) of 0.98 +/- 0.06 microm. Inhibition of receptors for inositol 1,4,5-trisphosphate (IP(3)) by heparin or flunarizine blocks the effect of acetylcholine but only partly blocks the effect of cholecystokinin. 8-NH(2) cyclic ADP-ribose (20 microm) inhibits the action of cholecystokinin, but not of acetylcholine(.) The basal Ca(2+) leak from the endoplasmic reticulum is not blocked by antagonists of the IP(3) receptor, the ryanodine receptor, or the receptor for nicotinic acid adenine dinucleotide phosphate. However, treatment with puromycin (0.1-1 mm) to remove nascent polypeptides from ribosomes increases Ca(2+) leak from the endoplasmic reticulum by a mechanism independent of the endoplasmic reticulum Ca(2+) pumps and of the receptors for IP(3) or ryanodine.  相似文献   

20.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号