首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Asthma and allergy are characterized by dysregulation of inflammatory responses toward Th2 responses and high serum levels of IgE. IgE plays a role in the effector phase by triggering the degranulation of mast cells after antigen-crosslinking but its role in the induction of helper T cell differentiation is unknown. We have previously shown lymphotoxin is required for maintaining physiological levels of serum IgE which minimize spontaneous Th1-mediated airway inflammation, suggesting a physiological role for IgE in the regulation of T helper cell differentiation. We describe the mechanism in which IgE modulates inflammation by regulating dendritic cell cytokine production. Physiological levels of IgE suppress IL-12 production in the spleen and lung, suggesting IgE limits Th1 responses in vivo. IgE directly stimulates dendritic cells through FcγRIII to suppress IL-12 in vitro and influences APC to skew CD4+ T cells toward Th2 differentiation. We demonstrate a novel role for IgE in regulating differentiation of adaptive inflammatory responses through direct interaction with FcγRIII on dendritic cells.  相似文献   

5.
Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation.  相似文献   

6.
Wnt signaling through frizzled (Fz) receptors plays key roles in just about every developmental system that has been studied. Several Wnt-Fz signaling pathways have been identified including the Wnt/planar cell polarity (PCP) pathway. PCP signaling is crucial for many developmental processes that require major cytoskeletal rearrangements. Downstream of Fz, PCP signaling is thought to involve the GTPases, Rho, Rac and Cdc42 and regulation of the JNK cascade. Here we report on the localization of these GTPases and JNK in the lens and assess their involvement in the cytoskeletal reorganisation that is a key element of FGF-induced lens fiber cell differentiation.  相似文献   

7.

Background

Transplantation is one potential clinical application of neural stem cells (NSCs). However, it is very difficult to monitor/control NSCs after transplantation and so provide effective treatment. Electrical measurement using a poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT–PSS) modified microelectrode array (MEA) is a biocompatible, non-invasive, non-destructive approach to understanding cell conditions. This property makes continuous monitoring available for the evaluation/assessment of the development of cells such as NSCs.

Methods

A PEDOT–PSS modified MEA was used to monitor electrical signals during NSC development in a culture derived from rat embryo striatum in order to understand the NSC differentiation conditions.

Results

Electrical data indicated that NSCs with nerve growth factor (NGF) generate a cultured cortical neuron-like burst pattern while a random noise pattern was measured with epidermal growth factor (EGF) at 4 days in vitro (DIV) and a burst pattern was observed in both cases at 11 DIV indicating the successful monitoring of differentiation differences and developmental changes.

Conclusions

The electrical analysis of cell activity using a PEDOT–PSS modified MEA could indicate neural network formation by differentiated neurons. Changes in NSC differentiation could be monitored.

General significance

The method is based on non-invasive continuous measurement and so could prove a useful tool for the primary/preliminary evaluation of a pharmaceutical analysis. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

8.
Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and differentiation. PA consists of various molecular species with different acyl chains at the sn-1 and sn-2 positions. However, it has been poorly understood what PA molecular species are produced during such cellular events. Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method. Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a neuroblastoma cells 24–48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not. Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.  相似文献   

9.
The polyamines putrescine, spermidine and spermine have been implicated in the regulation of proliferation and differentiation. The present study has monitored the effects of 5′-methylthioadenosine, the metabolic product of spermidine and spermine synthesis, on the appearance of a differentiated murine erythroleukemia cell phenotype. The results demonstrate that increasing concentrations of 5′-methylthioadenosine (1 × 10?6 to 5 × 10?4M) progressively inhibit murine erythroleukemia cell heme synthesis and hemoglobin production. The results also demonstrate that this inhibition of differentiation is not related to depletion of intracellular spermidine or cytostasis. Since 5′-methylthioadenosine is also a known inhibitor of DNA methylation, this naturally occurring nucleoside may be an intermediate involved in both murine erythroleukemia cell proliferation and differentiation.  相似文献   

10.
11.
12.
The cellular localization of A-kinase anchoring proteins (AKAPs), protein kinase A (PKAs) and phosphodiesterases (PDEs) is a key step to the spatiotemporal regulation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In this paper the cellular distribution of the mitochondrial AKAP 149–PKA–PDE4A complex and its implications in the cell death induced by YTX treatment, a known PDE modulator, was studied. K-562 cell line was incubated with YTX for 24 or 48 h. Under these conditions AKAP 149, PKA and type-4A PDE (PDE4A) levels were measured in the cytosol, in the plasma membrane and in the nucleus. Apoptotic hallmarks were also measured after the same conditions. In addition, YTX effect on cell viability was checked after AKAP 149 and PDE4A silencing. The results obtained show a decrease in AKAP 149–PKA–PDE4A levels in cytosol after YTX exposure. 24 h after the toxin addition, the complex expression increased in the plasma membrane and after 48 h in the nucleus domain. Furthermore Bcl-2 levels were decreased and the expression of caspase 3 together with caspase 8 activity were increased after 24 h of toxin incubation but not after 48 h. These results suggest apoptotic cell death at 24 h and a non-apoptotic cell death after 48 h. When AKAP 149 and PDE4A were silenced YTX did not induce cellular death. In summary, AKAP 149–PKA–PDE4A complex localization is related with YTX effect in K-562 cell line. When this complex is mainly located in the plasma membrane apoptosis is activated while when the complex is in the nuclear domain non-apoptotic cellular death or cellular differentiation is activated. Therefore AKAP 149–PKA–PDE4A distribution and integrity have a key role in cellular survival.  相似文献   

13.
Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.  相似文献   

14.
15.
16.
It was previously shown that 14-3-3η is overexpressed in the synovial fluid of patients with joint inflammation, which is often associated with growth failure. In this study, we investigated the role of 14-3-3η in chondrogenesis using ATDC5 cells. Upon treatment with TNF-α, cells overexpressed 14-3-3η with inhibition of chondrogenesis. Chondrogenesis was also inhibited by overexpression of 14-3-3η without TNF-α treatment, whereas silencing of 14-3-3η promoted chondrogenic differentiation. Further, G1 phase arrest was inhibited by overexpression of 14-3-3η. In summary, we suggest that 14-3-3η plays a regulatory role in chondrogenic differentiation.  相似文献   

17.
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.  相似文献   

18.
Asthma, allergic rhinitis and atopic dermatitis are allergic immune disorders characterised by a predominance of T helper 2 (Th2) cells, the resulting elevation of allergen-specific IgE, and mast-cell- and basophil-associated inflammation. The cytokine environment at the site of the initial antigen stimulation determines the direction of Th-cell differentiation into Th1 or Th2 cells. The SOCS (suppressor of cytokine signalling) proteins are implicated in the control of the balance between Th1 and Th2 cells in this process. SOCS3 is predominantly expressed in Th2 cells and inhibits Th1 differentiation; conversely, SOCS5 is expressed predominantly in Th1 cells and inhibits Th2 differentiation. Here, we discuss the role of SOCS proteins in Th-cell differentiation and explore the potential of SOCS proteins as targets for therapeutic strategies in allergic disorders.  相似文献   

19.
In the past few years many - and -tubulin genes of different organisms have been cloned and studied, and in most systems studied they constitute multigene families. In plants, most studies have been done in Arabidopsis thaliana and Zea mays. In this paper, the study of mRNA accumulation by in situ hybridization and the activity of three maize -tubulin gene promoters (tua1, tua2 and tua3) in transgenic tobacco plants are described. In maize, the expression of these three tubulin isotypes differ in the root and shoot apex and is associated with different groups of cells throughout the distinct stages of cell differentiation. In transgenic tobacco plants the promoters of the genes, fused to the uidA reporter gene (GUS), direct expression to the same tissues observed by in situ hybridization experiments. The tua1 promoter is mainly active in cortex-producing meristematic cells and in pollen, whereas tua3 is active in cells which are differentiating to form vascular bundles in the root and shoot apices. The accumulation of tua2 mRNA is detected by RNA blot in a similar form as tua1, but at a very much low level. In situ hybridization indicates that the tua2 mRNA specifically accumulates in the maize root epidermis. No GUS staining was detected in transgenic tobacco plants with the tua2 promoter. The difference in expression of the specific genes may be linked to processes where microtubules have different functions, suggesting that in plants, as in animals, there are differences in the function of the tubulin isotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号