首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We have previously shown evidence for the existence of a calcium-independent, GTP-regulated mechanism of secretion from neutrophils, but this secretory mechanism remains to be fully elucidated. Cyclin-dependent kinase 5 (Cdk5), the various substrates of which include Munc18 and synapsin 1, has been implicated in neuronal secretion. Although the Cdk5 activator, p35, and Cdk5-p35 activity are primarily associated with neurons, we report here that p35 also exists in neutrophils and that an active Cdk5-p35 complex is present in these cells. Cdk5-p35 activity in human neutrophils is mostly localized in secretory granules, which show an increase in Cdk5-p35 level and activity upon GTP stimulation. The potent Cdk5 inhibitor, roscovitine, completely blocks GTP-stimulated granule Cdk5 activity, which accompanies lactoferrin secretion from neutrophil-specific granules. Roscovitine also inhibits GTP-induced lactoferrin secretion and surface localization of the secretion markers, CD63 and CD66b, to a certain extent. Furthermore, neutrophils from wild-type mice treated with roscovitine and neutrophils from p35(-/-) mice exhibit comparable surface expression levels of both CD63 and CD66b upon GTP stimulation. Although our data suggest that other molecules control GTP-induced secretion from neutrophils, it is clear that Cdk5-p35 is required to elicit the maximum GTP-induced secretory response. Our observation that multiple proteins in neutrophil granules serve as specific substrates of Cdk5 further supports the premise that the kinase is a key component of the GTP-regulated secretory apparatus in neutrophils.  相似文献   

2.
The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates beta-tubulin both in vitro and in vivo. Phosphorylation occurs on Ser172 of beta-tubulin, a site that is well conserved in evolution. Using a phosphopeptide antibody, we find that a fraction of the cell tubulin is phosphorylated during mitosis, and this tubulin phosphorylation is inhibited by the Cdk1 inhibitor roscovitine. In mitotic cells, phosphorylated tubulin is excluded from microtubules, being present in the soluble tubulin fraction. Consistent with this distribution in cells, the incorporation of Cdk1-phosphorylated tubulin into growing microtubules is impaired in vitro. Additionally, EGFP-beta3-tubulin(S172D/E) mutants that mimic phosphorylated tubulin are unable to incorporate into microtubules when expressed in cells. Modeling shows that the presence of a phosphoserine at position 172 may impair both GTP binding to beta-tubulin and interactions between tubulin dimers. These data indicate that phosphorylation of tubulin by Cdk1 could be involved in the regulation of microtubule dynamics during mitosis.  相似文献   

3.
Rap1 signaling is important for migration, differentiation, axonal growth, and during neuronal polarity. Rap1 can be activated by external stimuli, which in turn regulates specific guanine nucleotide exchange factors such as C3G, among others. Cdk5 functions are also important to neuronal migration and differentiation. Since we found that pharmacological inhibition of Cdk5 by using roscovitine reduced Rap1 protein levels in COS-7 cells and also C3G contains three putative phosphorylation sites for Cdk5, we examined whether the Cdk5-dependent phosphorylation of C3G could affect Rap1 expression and activity. We co-transfected C3G and tet-OFF system for p35 over-expression, an activator of Cdk5 activity into COS-7 cells, and then we evaluated phosphorylation in serine residues in C3G by immunoprecipitation and Western blot. We found that p35 over-expression increased C3G-serine-phosphorylation while inhibition of p35 expression by tetracycline or inhibition of Cdk5 activity with roscovitine decreased it. Interestingly, we found that MG-132, a proteasome inhibitor, rescue Rap1 protein levels in the presence of roscovitine. Besides, C3G-serine-phosphorylation and Rap1 protein levels were reduced in brain from Cdk5−/− as compared with the Cdk5+/+ brain. Finally, we found that p35 over-expression increased Rap1 activity while inhibition of p35 expression by tetracycline or roscovitine decreased Rap1 activity. These results suggest that Cdk5-mediated serine-phosphorylation of C3G may control Rap1 stability and activity, and this may potentially impact various neuronal functions such as migration, differentiation, and polarity.  相似文献   

4.
c-Src is phosphorylated at specific serine and threonine residues during mitosis in fibroblastic and epithelial cells. These sites are phosphorylated in vitro by the mitotic kinase Cdk1 (p34(cdc2)). In contrast, c-Src in Y79 human retinoblastoma cells, which are of neuronal origin, is phosphorylated at one of the mitotic sites, Ser75, throughout the cell cycle. The identity of the serine kinase that nonmitotically phosphorylates c-Src on Ser75 remains unknown. We now are able to show for the first time that Cdk5 kinase, which has the same consensus sequence as the Cdk1 and Cdk2 kinases, is required for the phosphorylation in asynchronous Y79 cells. The Ser75 phosphorylation was inhibited in a dose-dependent manner by butyrolactone I, a specific inhibitor of Cdk5-type kinases. Three stable subclones that have almost no kinase activity were selected by transfection of an antisense Cdk5-specific activator p35 construct into Y79 cells. The loss of the kinase activity caused an approximately 85% inhibition of the Ser75 phosphorylation. These results present compelling evidence that Cdk5/p35 kinase is responsible for the novel phosphorylation of c-Src at Ser75 in neuronal cells, raising the intriguing possibility that c-Src acts as an effector of Cdk5/p35 kinase during neuronal development.  相似文献   

5.
Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion   总被引:1,自引:0,他引:1  
Lee HY  Jung H  Jang IH  Suh PG  Ryu SH 《Cellular signalling》2008,20(10):1787-1794
Insulin secretion from pancreatic beta-cells is an important process that affects the regulation of glucose level in the blood. In our previous study, we suggested that epidermal growth factor (EGF) stimulates insulin secretion by activating phospholipase D2 (PLD2) [H.Y. Lee, K. Yea, J. Kim, B.D. Lee, Y.C. Chae, H.S. Kim, D.W. Lee, S.H. Kim, J.H. Cho, C.J. Jin, D.S. Koh, K.S. Park, P.G. Suh, S.H. Ryu, 2007. Epidermal Growth Factor Increases Insulin Secretion and Lowers Blood Glucose in Diabetic Mice. J. Cell. Mol. Med. 5:5]. However, the specific mechanism by which PLD2 activation leads to insulin secretion was not determined. In this study, we suggest that the phosphorylation and activation of PLD2 by cyclin-dependent kinase 5 (Cdk5) is critical for EGF-dependent insulin secretion. We found that a Cdk5 inhibitor, roscovitine, and dominant-negative Cdk5 inhibited EGF-dependent PLD2 activation and insulin secretion. EGF stimulation activated Cdk5 activity in rat insulinoma RINm5F cells, and PLD2 phosphorylation by Cdk5 was observed in vitro and in cells. The kinetics of PLD2 phosphorylation correlates with the interaction between PLD2 and Cdk5 and its effect on EGF signaling. We determined that the phosphorylation site of PLD2 was located at Ser(134). PLD2-S134A did not show EGF-dependent phosphorylation and activation by Cdk5. Furthermore, this mutant was unable to mediate EGF-dependent insulin secretion in pancreatic beta cell lines, suggesting that the phosphorylation of PLD2 at Ser(134) by Cdk5 is critical for this process. The study results suggest that PLD2 is a new substrate of Cdk5 and that the phosphorylation of PLD2 by Cdk5 is involved in EGF-dependent insulin secretion.  相似文献   

6.
In neutrophils, the major substrate of MAPKAPK2 (MK2) is an F-actin binding protein LSP1. Studies using mutants of the two potential Serine phosphorylation sites in LSP1 C-terminal F-actin binding region indicated that the major phosphorylation site for MK2 is Ser243 in murine neutrophils (Ser252 in humans). Human phosphoLSP1 antibodies that recognize phosphoSer252 site were prepared and revealed fMLP-induced neutrophil LSP1 phosphorylation. The phosphorylation was inhibited by p38 MAPK (upstream kinase for MK2) inhibitor SB203580. The antibodies also detect LSP1 phosphorylation in murine neutrophils. Immunostaining revealed that in WT murine neutrophils phosphoLSP1 was localized in F-actin enriched lamellipodia and oriented toward the fMLP gradient while non-phosphoLSP1 failed to colocalize with F-actin. In suspension, WT neutrophils exhibited persistent F-actin polarization following fMLP stimulation, while MK2(-/-) neutrophils exhibited transient F-actin polarization. These studies suggest that MK2-regulated LSP1 phosphorylation is involved in stabilization of F-actin polarization during neutrophil chemotaxis.  相似文献   

7.
Mutations in the doublecortin (DCX) gene in human or targeted disruption of the cdk5 gene in mouse lead to similar cortical lamination defects in the developing brain. Here we show that Dcx is phosphorylated by Cdk5. Dcx phosphorylation is developmentally regulated and corresponds to the timing of expression of p35, the major activating subunit for Cdk5. Mass spectrometry and Western blot analysis indicate phosphorylation at Dcx residue Ser297. Phosphorylation of Dcx lowers its affinity to microtubules in vitro, reduces its effect on polymerization, and displaces it from microtubules in cultured neurons. Mutation of Ser297 blocks the effect of Dcx on migration in a fashion similar to pharmacological inhibition of Cdk5 activity. These results suggest that Dcx phosphorylation by Cdk5 regulates its actions on migration through an effect on microtubules.  相似文献   

8.
Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.  相似文献   

9.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   

10.
11.
12.
The cytoskeleton plays a central role for the integration of biochemical and biomechanical signals across the cell required for complex cellular functions. Recent studies indicate that the intermediate filament vimentin is necessary for endothelial cell morphogenesis e.g. in the context of leukocyte transmigration. Here, we present evidence, that the scaffold provided by vimentin is essential for VASP localization and PKG mediated VASP phosphorylation and thus controls endothelial cell migration and proliferation. Vimentin suppression using siRNA technique significantly decreased migration velocity by 50% (videomicroscopy), diminished transmigration activity by 42.5% (Boyden chamber) and reduced proliferation by 43% (BrdU-incorporation). In confocal microscopy Vimentin colocalized with VASP and PKG in endothelial cells. Vimentin suppression was accompanied with a translocation of VASP from focal contacts to the perinuclear region. VASP/Vimentin and PKG/Vimentin colocalization appeared to be essential for proper PKG mediated VASP phosphorylation because we detected a diminished expression of PKG and pSer239-VASP in vimentin-suppressed cells, Furthermore, the induction of VASP phosphorylation in perfused arteries was markedly decreased in vimentin knockout mice compared to wildtypes. A link is proposed between vimentin, VASP phosphorylation and actin dynamics that delivers an explanation for the important role of vimentin in controlling endothelial cell morphogenesis.  相似文献   

13.
Serum levels of the acute-phase reactant, C-reactive protein (CRP), increase dramatically during acute inflammatory episodes. CRP inhibits migration of neutrophils toward the chemoattractant, f-Met-Leu-Phe (fMLP) and therefore acts as an anti-inflammatory agent. Since tyrosine kinases are involved in neutrophil migration and CRP has been shown to decrease phosphorylation of some neutrophil proteins, we hypothesized that CRP inhibits neutrophil chemotaxis via inhibition of MAP kinase activity. The importance of p38 MAP kinase in neutrophil movement was determined by use of the specific p38 MAP kinase inhibitor, SB203580. CRP and SB203580 both blocked random and fMLP-directed neutrophil movement in a concentration-dependent manner. Additionally, extracellular signal-regulated MAP kinase (ERK) was not involved in fMLP-induced neutrophil movement as determined by use of the MEK-specific inhibitor, PD98059. Blockade of ERK with PD98059 did not inhibit chemotaxis nor did it alter the ability of CRP or SB203580 to inhibit fMLP-induced chemotaxis. More importantly, CRP inhibited fMLP-induced p38 MAP kinase activity in a concentration-dependent manner as measured by an in vitro kinase assay. Impressively, CRP-mediated inhibition of p38 MAP kinase activity correlated with CRP-mediated inhibition of fMLP-induced chemotaxis (r = -0.7144). These data show that signal transduction through p38 MAP kinase is necessary for neutrophil chemotaxis and that CRP intercedes through this pathway in inhibiting neutrophil movement.  相似文献   

14.
15.
Regulation of cytoskeletal dynamics is essential to neuronal plasticity during development and adulthood. Dysregulation of these mechanisms may contribute to neuropsychiatric and neurodegenerative diseases. The neuronal protein kinase, cyclin-dependent kinase 5 (Cdk5), is involved in multiple aspects of neuronal function, including regulation of cytoskeleton. A neuroproteomic search identified the tubulin-binding protein, stathmin, as a novel Cdk5 substrate. Stathmin was phosphorylated by Cdk5 in vitro at Ser25 and Ser38, previously identified as mitogen-activated protein kinase (MAPK) and p38 MAPKdelta sites. Cdk5 predominantly phosphorylated Ser38, while MAPK and p38 MAPKdelta predominantly phosphorylated Ser25. Stathmin was phosphorylated at both sites in mouse brain, with higher levels in cortex and striatum. Cdk5 knockout mice exhibited decreased phospho-Ser38 levels. During development, phospho-Ser25 and -Ser38 levels peaked at post-natal day 7, followed by reduction in total stathmin. Inhibition of protein phosphatases in striatal slices caused an increase in phospho-Ser25 and a decrease in total stathmin. Interestingly, the prefrontal cortex of schizophrenic patients had increased phospho-Ser25 levels. In contrast, total and phospho-Ser25 stoichiometries were decreased in the hippocampus of Alzheimer's patients. Thus, microtubule regulatory mechanisms involving the phosphorylation of stathmin may contribute to developmental synaptic pruning and structural plasticity, and may be involved in neuropsychiatric and neurodegenerative disorders.  相似文献   

16.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

17.
We previously reported Chk1 to be phosphorylated at Ser286 and Ser301 by cyclin-dependent kinase (Cdk) 1 during mitosis [T. Shiromizu et al., Genes Cells 11 (2006) 477-485]. Here, we demonstrated that Chk1-Ser286 and -Ser301 phosphorylation also occurs in hydroxyurea (HU)-treated or ultraviolet (UV)-irradiated cells. Unlike the mitosis case, however, Chk1 was phosphorylated not only at Ser286 and Ser301 but also at Ser317 and Ser345 in the checkpoint response. Treatment with Cdk inhibitors diminished Chk1 phosphorylation at Ser286 and Ser301 but not at Ser317 and Ser345 with the latter. In vitro analyses revealed Ser286 and Ser301 on Chk1 to serve as two major phosphorylation sites for Cdk2. Immunoprecipitation analyses further demonstrated that Ser286/Ser301 and Ser317/Ser345 phosphorylation occur in the same Chk1 molecule during the checkpoint response. In addition, Ser286/Ser301 phosphorylation by Cdk2 was observed in Chk1 mutated to Ala at Ser317 and Ser345 (S317A/S345A), as well as Ser317/Ser345 phosphorylation by ATR was in S286A/S301A. Therefore, Chk1 phosphorylation in the checkpoint response is regulated not only by ATR but also by Cdk2.  相似文献   

18.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

19.
The class Ia phosphoinositide (PI) 3-kinase consisting of p110 catalytic and p85 regulatory subunits is activated by Tyr kinase-linked membrane receptors such as FcgammaRII through the association of p85 with the phosphorylated receptors or adaptors. The heterodimeric PI 3-kinase is also activated by G protein-coupled chemotactic fMLP receptors, and activation of the lipid kinase plays an important role in various immune responses, including superoxide formation in neutrophils. Although fMLP-induced superoxide formation is markedly enhanced in FcgammaRII-primed neutrophils, the molecular mechanisms remain poorly characterized. In this study, we identified two Tyr-phosphorylated proteins, c-Cbl (Casitas B-lineage lymphoma) and Grb2-associated binder 2 (Gab2), as PI 3-kinase adaptors that are Tyr phosphorylated upon the stimulation of FcgammaRII in differentiated neutrophil-like THP-1 cells. Interestingly, Gab2 was, but c-Cbl was not, further Ser/Thr phosphorylated by fMLP. Thus, the adaptor Gab2 appeared to be dually phosphorylated at the Ser/Thr and Tyr residues through the two different types of membrane receptors. The Ser/Thr phosphorylation of Gab2 required the activation of extracellular signal-regulated kinase, and fMLP receptor stimulation indeed activated extracellular signal-regulated kinase in the cells. Enhanced superoxide formation in response to Fcgamma and fMLP was markedly attenuated when the Gab2 Ser/Thr phosphorylation was inhibited. These results show the importance of the dual phosphorylation of PI 3-kinase adaptor Gab2 for the enhanced superoxide formation in neutrophil-type cells.  相似文献   

20.
Cdk5 is a proline-directed Ser/Thr protein kinase predominantly expressed in postmitotic neurons together with its activator, p35. N-terminal truncation of p35 to p25 by calpain results in deregulation of Cdk5 and contributes to neuronal cell death associated with several neurodegenerative diseases. Previously we reported that p35 occurred as a phosphoprotein, phospho-p35 levels changed with neuronal maturation, and that phosphorylation of p35 affected its vulnerability to calpain cleavage. Here, we identify the p35 residues Ser(8) and Thr(138) as the major sites of phosphorylation by Cdk5. Mutagenesis of these sites to unphosphorylatable Ala increased susceptibility to calpain in cultured cells and neurons while changing them to phosphomimetic glutamate-attenuated cleavage. Furthermore, phosphorylation state-specific antibodies to these sites revealed that Thr(138) was dephosphorylated in adult rat, although both Ser(8) and Thr(138) were phosphorylated in prenatal brains. In cultured neurons, inhibition of protein phosphatases converted phosho-Ser(8) p35 to dual phospho-Ser(8)/Thr(138) p35 and conferred resistance to calpain cleavage. These results suggest phosphorylation of Thr(138) predominantly defines the susceptibility of p35 to calpain-dependent cleavage and that dephosphorylation of this site is a critical determinant of Cdk5-p25-induced cell death associated with neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号