首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past decade, cell therapies have provided promising strategies for the treatment of ischaemic cardiomyopathy. Particularly, the beneficial effects of stem cells, including bone marrow stem cells (BMSCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), have been demonstrated by substantial preclinical and clinical studies. Nevertheless stem cell therapy is not always safe and effective. Hence, there is an urgent need for alternative sources of cells to promote cardiac regeneration. Human villous trophoblasts (HVTs) play key roles in embryonic implantation and placentation. In this study, we show that HVTs can promote tube formation of human umbilical vein endothelial cells (HUVECs) on Matrigel and enhance the resistance of neonatal rat cardiomyocytes (NRCMs) to oxidative stress in vitro. Delivery of HVTs to ischaemic area of heart preserved cardiac function and reduced fibrosis in a mouse model of acute myocardial infarction (AMI). Histological analysis revealed that transplantation of HVTs promoted angiogenesis in AMI mouse hearts. In addition, our data indicate that HVTs exert their therapeutic benefit through paracrine mechanisms. Meanwhile, injection of HVTs to mouse hearts did not elicit severe immune response. Taken together, our study demonstrates HVT may be used as a source for cell therapy or a tool to study cell‐derived soluble factors for AMI treatment.  相似文献   

2.
Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with?a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in?vitro and in?vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose?BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.  相似文献   

3.
Human induced pluripotent stem cells (iPSCs) hold great promise for regenerative med- icine. Generating iPSCs from immunologically immature newborn umbilical cord blood mononu- clear cells (UCBMCs) is of great significance. Here we report generation of human iPSCs with great efficiency from UCBMCs using a dox-inducible lentiviral system carrying four Yamanaka factors. We generated these cells by optimizing the existing iPSC induction protocol. The UCBMC-derived iPSCs (UCB-iPSCs) have characteristics that are identical to pluripotent human embryonic stem cells (hESCs). This study highlights the use of UCBMCs to generate highly functional human iPSCs that could accelerate the development of cell-based regenerative therapy for patients suffering from various diseases.  相似文献   

4.
Cardiomyocytes derived from pluripotent stem cells can be applied in drug testing, disease modeling and cell-based therapy. However, without procardiogenic growth factors, the efficiency of cardiomyogenesis from pluripotent stem cells is usually low and the resulting cardiomyocyte population is heterogeneous. Here, we demonstrate that induced pluripotent stem cells (iPSCs) can be derived from murine ventricular myocytes (VMs), and consistent with other reports of iPSCs derived from various somatic cell types, VM-derived iPSCs (ViPSCs) exhibit a markedly higher propensity to spontaneously differentiate into beating cardiomyocytes as compared to genetically matched embryonic stem cells (ESCs) or iPSCs derived from tail-tip fibroblasts. Strikingly, the majority of ViPSC-derived cardiomyocytes display a ventricular phenotype. The enhanced ventricular myogenesis in ViPSCs is mediated via increased numbers of cardiovascular progenitors at early stages of differentiation. In order to investigate the mechanism of enhanced ventricular myogenesis from ViPSCs, we performed global gene expression and DNA methylation analysis, which revealed a distinct epigenetic signature that may be involved in specifying the VM fate in pluripotent stem cells.  相似文献   

5.
6.
Induced pluripotent stem cells(iPSCs)resemble embryonic stem cells(ESCs)in morphology,gene expression and in vitro differentiation,raising new hope for personalized clinical therapy.While many efforts have been made to improve reprogramming effciency,signifcant problems such as genomic instability of iPSCs need to be addressed before clinical therapy.In this study,we try to fgure out the real genomic state of iPSCs and their DNA damage response to ionizing radiation(IR).We found that iPSC line 3FB4-1 had lower DNA damage repair ability than mouse embryonic fbroblast(MEF)cells,from which 3FB4-1line was derived.After the introduction of DNA damage by IR,the number of c-H2AX foci in 3FB4-1 increased modestly compared to a large increase seen in MEF,albeit both signifcantly(P<0.01).In addition,whole-genome sequencing analysis showed that after IR,3FB4-1 possessed more point mutations than MEF and the point mutations spread all over chromosomes.These observations provide evidence that iPSCs are more sensitive to ionizing radiation and their relatively low DNA damage repair capacity may account for their high radiosensitivity.The compromised DNA damage repair capacity of iPSCs should be considered when used in clinical therapy.  相似文献   

7.
8.
9.
10.
Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.  相似文献   

11.
Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment.  相似文献   

12.
Historically, our understanding of molecular genetic aspects of germ cell development has been limited. Recently, results demonstrated that the derivation of pluripotent stem cells may provide the necessary genetic system to study germ cell development. Here, we characterized an induced pluripotent stem cell (iPSC) line, which can spontaneously differentiate into embryonic bodies (EBs) after 3 days of suspension culture, expressing specific markers of three germ layers. Then, we induced the iPSCs to differentiate into germ cells by culturing adherent EBs in retinoic acid (RA) and porcine follicular fluid (PFF) differentiation medium or seminiferous tubule transplantation. Our results indicated that RA and PFF were beneficial for the derivation of germ cells and oocyte‐like cells from iPSCs, and iPSCs transplantation could make a contribution to repairing the testis of infertile mice. Our study offers an approach for further study on the development and the differentiation of germ cells derived from iPSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
In the present study, induced pluripotent stem cells (iPSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs) and an immortalized cell line (RMNE6), representing different characteristics of stem cells, were transplanted into normal and/or injured brain areas of rodent stroke models, and their effects were compared to select suitable stem cells for cell replacement stroke therapy. The rat and mice ischaemic models were constructed using the middle cerebral artery occlusion technique. Both electrocoagulation of the artery and the intraluminal filament technique were used. The behaviour changes and fates of grafted stem cells were determined mainly by behaviour testing and immunocytochemistry. Following iPSC transplantation into the corpora striata of normal mice, a tumour developed in the brain. The iNSCs survived well and migrated towards the injured area without differentiation. Although there was no tumourigenesis in the brain of normal or ischaemic mice after the iNSCs were transplanted in the cortices, the behaviour in ischaemic mice was not improved. Upon transplanting MSC and RMNE6 cells into ischaemic rat brains, results similar to iNSCs in mice were seen. However, transplantation of RMNE6 caused a brain tumour. Thus, tumourigenesis and indeterminate improvement of behaviour are challenging problems encountered in stem cell therapy for stroke, and the intrinsic characteristics of stem cells should be remodelled before transplantation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
BMP4 initiates human embryonic stem cell differentiation to trophoblast   总被引:27,自引:0,他引:27  
The excitement and controversy surrounding the potential role of human embryonic stem (ES) cells in transplantation therapy have often overshadowed their potentially more important use as a basic research tool for understanding the development and function of human tissues. Human ES cells can proliferate without a known limit and can form advanced derivatives of all three embryonic germ layers. What is less widely appreciated is that human ES cells can also form the extra-embryonic tissues that differentiate from the embryo before gastrulation. The use of human ES cells to derive early human trophoblast is particularly valuable, because it is difficult to obtain from other sources and is significantly different from mouse trophoblast. Here we show that bone morphogenetic protein 4 (BMP4), a member of the transforming growth factor-beta (TGF-beta) superfamily, induces the differentiation of human ES cells to trophoblast. DNA microarray, RT-PCR, and immunoassay analyses demonstrate that the differentiated cells express a range of trophoblast markers and secrete placental hormones. When plated at low density, the BMP4-treated cells form syncytia that express chorionic gonadotrophin (CG). These results underscore fundamental differences between human and mouse ES cells, which differentiate poorly, if at all, to trophoblast. Human ES cells thus provide a tool for studying the differentiation and function of early human trophoblast and could provide a new understanding of some of the earliest differentiation events of human postimplantation development.  相似文献   

17.
The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.  相似文献   

18.
Induced pluripotent stem cells (iPSCs) show good promise for the treatment of defects caused by numerous genetic diseases. Herein, we successfully generated CD44 gene-deficient iPSCs using Oct4, Sox2, Klf4, and vitamin C. The generated iPSCs displayed a characteristic morphology similar to the well-characterized embryonic stem cells. Alkaline phosphatase, cell surface (SSEA1, NANOG, and OCT4), and pluripotency markers were expressed at high levels in these cells. The iPSCs formed teratomas in vivo and supported full-term development of constructed porcine embryos by inter-species nuclear transplantation. Importantly, incubation with trichostatin A increased the efficiency of iPSCs generation by increasing the histone acetylation levels. Moreover, more iPSCs colonies appeared following cell passaging during colony picking, thus increasing the effectiveness of iPSCs selection. Thus, our work provides essential stem cell materials for the treatment of genetic diseases and proposes a novel strategy to enhance the efficiency of induced reprogramming.  相似文献   

19.
Islet transplantation is considered as an ultimate option for the treatment of type I diabetes. Human induced pluripotent stem cells (hiPSCs) have raised the possibility that patient-specific insulin-secreting cells might be derived from somatic cells through cell fate reprogramming. However, current protocols mostly rely on the use of several cytokines and inhibitors for directing differentiation towards pancreatic fate. Given the high manufacturing cost of these recombinant proteins, this approach is prohibitive for clinical applications. Knowing that microRNAs (miRNAs) are key players in various stages of pancreatic development, we present a novel and cost-effective strategy in which over-expression of miR-375 promotes pancreatic differentiation in hiPSCs in the absence of any other stimulator. We used a polycistronic viral vector expressing Sox2, Klf4, c-Myc, and Oct4 to drive hiPSCs from human foreskin fibroblasts. The established hiPSCs are similar to human embryonic stem cells in many aspects including morphology, passaging, surface and pluripotency markers, and gene expression. For differentiation induction, miR-375 was lentivirally overexpressed in these hiPSCs. Morphological assessment, immunocytochemistry, and expression analysis of islet marker genes confirmed that islet like cells were obtained in miR-375 transduced cells compared to controls. Our differentiated clusters secreted insulin in a glucose-dependant manner, showing in vitro functionality. We demonstrated for the first time that miRNAs might be ideal substitutes to induce pancreatic differentiation in hiPSCs. This work provides a new approach to study the role of miRNAs in pancreatic specification and increase the feasibility of using patient-specific iPSCs for beta cell replacement therapy for type I diabetes.  相似文献   

20.
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号