首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PTH is a potent bone anabolic agent in vivo but anabolic effects on osteoblast differentiation in vitro are difficult to demonstrate. This study examined the role of cyclooxygenase (COX)-2 and prostaglandin (PG) production in the effects of PTH on osteoblast differentiation in vitro using marrow stromal cell (MSC) and calvarial osteoblast (COB) cultures from COX-2 knockout (KO) and wild type (WT) mice. Cells were treated with PTH (10 nM) or vehicle throughout culture. Alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA levels were measured at days 14 and 21, respectively, and mineralization at day 21. cAMP concentrations were measured in the presence of a phosphodiesterase inhibitor. PTH did not stimulate differentiation in cultures from WT mice but significantly increased ALP and OCN mRNA expression 6- to 7-fold in KO MSC cultures and 2- to 4-fold in KO COB cultures. PTH also increased mineralization in both KO MSC and COB cultures. Effects in KO cells were mimicked in WT MSC cultures treated with NS-398, an inhibitor of COX-2 activity. PTH increased cAMP concentrations similarly in WT and KO COBs. Differential gene responses to PTH in COX-2 KO COBs relative to WT COBs included greater fold-increases in the cAMP-mediated early response genes, c-fos and Nr4a2; increased IGF-1 mRNA expression; and decreased mRNA expression of MAP kinase phosphatase-1. PTH inhibited SOST mRNA expression 91% in COX-2 KO MSC cultures compared to 67% in WT cultures. We conclude that endogenous PGs inhibit the anabolic responses to PTH in vitro, possibly by desensitizing cAMP pathways.  相似文献   

3.
4.
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.  相似文献   

5.
Insulin and insulin‐like growth factor 1 (IGF‐1) are evolutionarily conserved hormonal signalling molecules, which influence a wide array of physiological functions including metabolism, growth and development. Using genetic mouse studies, both insulin and IGF‐1 have been shown to be anabolic agents in osteoblasts and bone development primarily through the activation of Akt and ERK signalling pathways. In this study, we examined the temporal signalling actions of insulin and IGF‐1 on primary calvarial osteoblast growth and differentiation. First, we observed that the IGF‐1 receptor expression decreases whereas insulin receptor expression increases during osteoblast differentiation. Subsequently, we show that although both insulin and IGF‐1 promote osteoblast differentiation and mineralization in vitro, IGF‐1, but not insulin, can induce osteoblast proliferation. The IGF‐1‐induced osteoblast proliferation was mediated via both MAPK and Akt pathways because the IGF‐1‐mediated cell proliferation was blocked by U0126, an MEK/MAPK inhibitor, or LY294002, a PI3‐kinase inhibitor. Osteocalcin, an osteoblast‐specific protein whose expression corresponds with osteoblast differentiation, was increased in a dose‐ and time‐dependent manner after insulin treatment, whereas it was decreased with IGF‐1 treatment. Moreover, insulin treatment dramatically induced osteocalcin promoter activity, whereas IGF‐1 treatment significantly inhibited it, indicating direct effect of insulin on osteocalcin synthesis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Parathyroid hormone (PTH) plays a major role in bone remodeling and has the ability to increase bone mass if administered daily. In vitro, PTH inhibits the growth of osteoblastic cell lines, arresting them in G(1) phase. Here, we demonstrate that PTH regulates the expression of at least three genes to achieve the following: inducing expression of MAPK phosphatase 1 (MKP-1) and p21(Cip1) and decreasing expression of cyclin D1 at both mRNA and protein levels. The induction of MKP-1 causes the dephosphorylation of extracellular signal-regulated kinase and therefore the decrease in cyclin D1. Overexpression of MKP-1 arrests UMR cells in G(1) phase. The mechanisms involved in PTH regulation of these genes were studied. Most importantly, PTH administration produces similar effects on expression of these genes in rat femoral metaphyseal primary spongiosa. Analyses of p21(Cip1) expression levels in bone indicate that repeated daily PTH injections make the osteoblast more sensitive to successive PTH treatments, and this might be an important feature for the anabolic functions of PTH. In summary, our data suggest that one mechanism for PTH to exert its anabolic effect is to arrest the cell cycle progression of the osteoblast and hence increase its differentiation.  相似文献   

8.
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that mediates inflammation and induces bone loss caused by excessive bone resorption by osteoclasts. The interaction of TNF-alpha with its receptor activates several signal transduction pathways, including those of mitogen-activated protein (MAP) kinases (p38, JNK, and ERK) and NF-kappaB. Signaling from these molecules has been shown to play an important role in osteoclastogenesis. In the present study, we investigated the mechanism of TNF-alpha-induced osteoclast differentiation in human peripheral blood mononuclear cells (PBMCs). We found that TNF-alpha alone greatly induced differentiation of PBMCs into osteoclasts. The osteoclast differentiation induced by TNF-alpha was independent of RANKL binding to its receptor RANK on PBMCs. Furthermore, TNF-alpha potently activated p38 MAPK, JNK, and NF-kappaB. Western blotting analysis revealed that p21(WAF1/Cip1), a cyclin-dependent kinase (CDK) inhibitor, is significantly induced upon TNF-alpha stimulation. The induction of p21(WAF1/Cip1) during differentiation is responsible for arrest at G(0)/G(1) phase and associated with the JNK pathway. These results suggest that TNF-alpha regulates osteoclast differentiation through p21(WAF1/Cip1) expression and further shows that these events require JNK activity.  相似文献   

9.
The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.  相似文献   

10.
11.
Intermittent administration of parathyroid hormone (PTH) activates new sites of bone formation by stimulating osteoblast differentiation and function resulting in an increase in bone mass. Because integrins have been shown to play a crucial role in osteoblast differentiation and bone formation, in the present study, we evaluated whether human PTH (1-34) upon administration to rats, influenced integrin expression in osteoblastic cells isolated from the metaphysis and the diaphysis of rat long bones. Initial immunohistochemical evaluation of bone sections demonstrated that the osteoblasts expressed at least alphav, alpha2, alpha3, and alpha5beta1 integrins. Immunocolocalization studies for integrins and vinculin established that alphav, alpha2, and alpha5beta1, but not alpha3 integrins were present in the focal adhesion sites of osteoblasts attached to FN coated surfaces. Osteoprogenitor cells isolated from metaphyseal (but not diaphyseal) marrow of rats injected with intermittent PTH (1-34) exhibited greater alphav and reduced alpha2 levels, with no apparent changes in alpha3, and alpha5beta1 integrin levels, as assessed by immunohistochemistry, Northern, and Western blot analyses. However, these changes were not observed on the same cells treated with PTH in vitro. These observations suggest that integrin modulation by PTH is likely to be indirect and that selective phenotypic expression of integrin subtypes is part of the cascade of events that lead to PTH (1-34) mediated osteoblast differentiation.  相似文献   

12.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3 weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.  相似文献   

13.
Although Porphyromonas gingivalis lipopolysaccharide (P‐LPS) is known to inhibit osteoblast differentiation, the exact molecular mechanisms underlying this phenomenon remain unclear. Here, we investigated the role of Notch signaling in the osteoblastic differentiation of both MC3T3E‐1 cells and primary mouse bone marrow stromal cells (BMSCs). P‐LPS stimulation activated the Notch1 signaling cascade and increased expression of the Notch target genes HES1 and HEY1. P‐LPS can also act as an inhibitor because it is capable of suppressing Wnt/β‐catenin signaling in preosteoblasts by decreasing both glycogen synthase kinase‐3β (GSK‐3β) phosphorylation and the expression of nuclear β‐catenin. These effects were rescued, however, by inhibiting Notch1 signaling. Furthermore, P‐LPS treatment inhibited osteoblast differentiation in preosteoblasts as demonstrated by reductions in alkaline phosphatase activity, osteoblast gene expression, and mineralization, all of which were rescued by suppression of Notch1 signaling. Moreover, inhibition of GSK‐3β, HES1, or HEY1 partially reversed the P‐LPS‐induced inhibition of osteoblast differentiation. Together, these findings suggest that P‐LPS inhibits osteoblast differentiation by promoting the expression of Notch target genes and suppressing canonical Wnt/β‐catenin signaling. J. Cell. Physiol. 225: 106–114, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Human bone marrow stromal cells (hMSCs) have the potential to differentiate into osteoblasts; there are age‐related decreases in their proliferation and differentiation to osteoblasts. Parathyroid hormone (PTH), when applied intermittently in vivo, has osteoanabolic effects in a variety of systems. In this study, we compared PTH signaling and osteoanabolic effects in hMSCs from young and old subjects. There were age‐related decreases in expression of PTH/PTHrP receptor type 1 (PTHR1) gene (P = 0.049, n = 19) and in PTH activation of CREB (P = 0.029, n = 7) and PTH stabilization of β‐catenin (P = 0.018, n = 7). Three human PTH peptides, PTH1‐34, PTH1‐31C (Ostabolin‐C, Leu27, Cyclo[Glu22‐Lys26]‐hPTH1‐31), and PTH1‐84 (10 nm ), stimulated osteoblast differentiation with hMSCs. Treatment with PTH1‐34 resulted in a significant 67% increase in alkaline phosphatase activity in hMSCs obtained from younger subjects (<50 years old, n = 5), compared with an 18% increase in hMSCs from elders (>55 years old, n = 7). Both knockdown of CREB and treatment with a protein kinase A inhibitor H‐89 blocked PTH stimulation of osteoblast differentiation in hMSCs from young subjects. The PTH peptides significantly stimulated proliferation of hMSCs. Treatment with PTH1‐34 resulted in an average of twice as many cells in cultures of hMSCs from young subjects (n = 4), but had no effect with hMSCs from elders (n = 7). Upregulation of PTHR1 by 24‐h pretreatment with 100 nm dexamethasone rescued PTH stimulation of proliferation in hMSCS from elders. In conclusion, age‐related intrinsic alterations in signaling responses to osteoanabolic agents like PTH may contribute to cellular and tissue aging of the human skeleton.  相似文献   

15.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

16.
The nephroblastoma overexpressed (NOV) gene, also called CCN3, regulates differentiation of skeletal mesenchymal cells. Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and bone formation, but the effects of CCN3 on BMP expression and bone formation in cultured osteoblasts are largely unknown. Here we found that CCN3 increased BMP-4 expression and bone nodule formation in cultured osteoblast. Monoclonal antibodies for α5β1 and αvβ5 integrins, and inhibitors of integrin-linked kinase (ILK), p38, and JNK, all inhibited CCN3-induced bone nodule formation and BMP-4 up-regulation of osteoblasts. CCN3 stimulation increased the kinase activity of ILK and phosphorylation of p38 and JNK. Inhibitors of activator protein-1 (AP-1) also suppressed bone nodule formation and BMP-4 expression enhanced by CCN3. Moreover, CCN3-induced c-Jun translocation into the nucleus, and the binding of c-Jun to the AP-1 element on the BMP-4 promoter were both inhibited by specific inhibitors of the ILK, p38, and JNK cascades. Taken together, our results provide evidence that CCN3 enhances BMP-4 expression and bone nodule formation in osteoblasts, and that the integrin receptor, ILK, p38, JNK, and AP-1 signaling pathways may be involved.  相似文献   

17.
Signal transduction pathways are integral components of the developmental regulatory network that guides progressive cell fate determination. MKK4 and MKK7 are upstream kinases of the mitogen-activated protein kinases (MAPKs), responsible for channeling physiological and environmental signals to their cellular responses. Both kinases are essential for survival of mouse embryos, but because of embryonic lethality, their precise developmental roles remain largely unknown. Using gene knock-out mouse ESCs, we studied the roles of MKK4 and MKK7 in differentiation in vitro. While MKK4 and MKK7 were dispensable for ESC self-renewal and pluripotency maintenance, they exhibited unique signaling and functional properties in differentiation. MKK4 and MKK7 complemented each other in activation of the JNK-c-Jun cascades and loss of both led to senescence upon cell differentiation. On the other hand, MKK4 and MKK7 had opposite effects on activation of the p38 cascades during differentiation. Specifically, MKK7 reduced p38 activation, while Mkk7(-/-) ESCs had elevated phosphorylation of MKK4, p38, and ATF2, and increased MEF2C expression. Consequently, Mkk7(-/-) ESCs had higher expression of MHC and MLC and enhanced formation of contractile cardiomyocytes. In contrast, MKK4 was required for p38 activation and Mkk4(-/-) ESCs exhibited diminished p-ATF2 and MEF2C expression, resulting in impaired MHC induction and defective cardiomyocyte differentiation. Exogenous MKK4 expression partially restored the ability of Mkk4(-/-) ESCs to differentiate into cardiomyocytes. Our results uncover complementary and interdependent roles of MKK4 and MKK7 in development, and identify the essential requirement for MKK4 in p38 activation and cardiomyocyte differentiation.  相似文献   

18.
19.
The stress kinase mitogen-activated protein kinase kinase 7 (MKK7) is a specific activator of c-Jun N-terminal kinase (JNK), which controls various physiological processes, such as cell proliferation, apoptosis, differentiation, and migration. Here we show that genetic inactivation of MKK7 resulted in an extended period of oscillation in circadian gene expression in mouse embryonic fibroblasts. Exogenous expression in cultured mammalian cells of an MKK7-JNK fusion protein that functions as a constitutively active form of JNK induced phosphorylation of PER2, an essential circadian component. Furthermore, JNK interacted with PER2 at both the exogenous and endogenous levels, and MKK7-mediated JNK activation increased the half-life of PER2 protein by inhibiting its ubiquitination. Notably, the PER2 protein stabilization induced by MKK7-JNK fusion protein reduced the degradation of PER2 induced by casein kinase 1ε. Taken together, our results support a novel function for the stress kinase MKK7 as a regulator of the circadian clock in mammalian cells at steady state.  相似文献   

20.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号