首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A comparative fluorescence in situ mapping of the SMN gene was performed on R-banded chromosome preparations of cattle (Bos taurus, BTA, 2n = 60), river buffalo (Bubalus bubalis, BBU, 2n = 50), sheep (Ovis aries, OAR, 2n = 54) and goat (Capra hircus, CHI, 2n = 60), as well as on those of a calf from Piedmont breed affected by arthrogryposis. SMN was located on BTA20q13.1, OAR16q13.1, CHI20q13.1 and BBU19q13. These chromosomes and chromosome bands are believed to be homeologous, confirming the high degree of chromosome homeologies among bovids. The position of SMN was refined in cattle, compared to the two previous localizations, while it is a new gene assignment in the other three bovids. A comparative fiber-FISH performed on extended chromatin of both normal cattle and calf affected by arthrogryposis revealed more extended FITC signals in the calf, compared to the normal cattle (control), suggesting a possible duplication of the SMN gene in the calf affected by arthrogryposis. .  相似文献   

2.
Four bovine BAC clones (0494F01, 0069D07, 0060B06, and 0306A12) containing MUC1, as confirmed by mapping MUC1 on a RH3000 radiation hybrid panel, were hybridised on R-banded chromosomes of cattle (BTA), river buffalo (BBU), sheep (OAR) and goat (CHI). MUC1 was FISH-mapped on BTA3q13, BBU6q13, OAR1p13 and CHI3q13 and both chromosomes and chromosome bands were homoeologous confirming the high degree of chromosome homoeologies among bovids and adding more information on the pericentromeric regions of these species' chromosomes. Indeed, MUC1 was more precisely assigned to BTA3 and assigned for the first time to BBU6, OAR1p and CHI3. Moreover, detailed and improved cytogenetic maps of BTA3, CHI3, OAR1p and BBU6 are shown and compared with HSA1.  相似文献   

3.
Thirteen goat BAC clones containing coding sequences from HSA7, HSA12q, HSA4 and HSA6p were fluorescence in situ mapped to river buffalo (Bubalus bubalis, BBU) and sheep (Ovis aries, OAR) R-banded chromosomes. The following type I loci were mapped: BCP to BBU8q32 and OAR4q32, CLCN1 to BBU8q34 and OAR4q34, IGFBP3 to BBU8q24 and OAR4q27, KRT to BBU4q21 and OAR 3q21, IFNG to BBU4q23 and OAR3q23, IGF1 to BBU4q31 and OAR3q31, GNRHR to BBU7q32 and OAR6q32, MTP to BBU7q21 and OAR6q15, PDE6B to BBU7q36 and OAR6q36, BF to BBU2p22 and OAR20q22, EDN1 to BBU2p24 and OAR20q24, GSTA1 to BBU2p22 and OAR20q22, OLADRB (MHC) to BBU2p22 and OAR20q22. All mapped loci appeared to be located on homologous chromosomes and chromosome bands in both bovids. Comparison between gene orders in bovid (BBU and OAR) and human (HSA) chromosomes revealed complex rearrangements, especially between BBU7/OAR6 and HSA4, as well as between BBU2p/OAR20 and HSA6p.  相似文献   

4.
Twelve loci (11 of type I and 1 of type II) previously FISH-mapped in cattle were comparatively FISH-mapped in both river buffalo chromosome 1p (BBU1p) and homologous chromosome 26 of sheep (OAR26), extending the cytogenetic maps in both chromosome species and providing a more precise localization of these loci in single chromosome bands than previous locations on BTA27. Bovine BAC clones containing DCTD, C4orf20, CASP3, TLR3, MSR1, FAT, LONRF1, DLC1, C8orf41, CSSM036, LSM1 and EIF4EBP1 were used for FISH on RBPI-banded chromosomes. All loci were located on the same homologous chromosome bands (R-band positive) of both species further confirming the high degree of banding and gene (order of loci) homologies among bovids. Detailed cytogenetic maps of OAR26 and BBU1p were performed and compared with that of BTA27 as well as with those of both HSA8p and HSA4q, revealing complex chromosome rearrangements differentiating OAR26/BBU1p/BTA27 from human chromosomes.  相似文献   

5.
Ten type I loci from HSA10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA10) maps on BBU14q13 and OAR13q13, VIM (HSA10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26, THBD (HSA20) maps on BBU14q15 and OAR13q15 while AVP/OXT, GNAS1, HCK, and TOP1 (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13, respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed.  相似文献   

6.
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.  相似文献   

7.
Sheep (OAR), goat (CHI) and cattle (BTA) R-banded chromosome preparations, obtained from synchronized cell cultures, were used to FISH-map leptin (LEP) and solute carrier family 26 member 2 (SLC26A2) genes on single chromosome bands. LEP maps on OAR4q32 and CHI4q32, being the first assignment of this gene to these two species. SLC26A2 maps on BTA7q24, OAR5q24 and CHI7q24. This gene, too, was assigned for the fist time to both sheep and goat chromosomes, while it was more precisely localized on a single chromosome band in cattle. Improved cytogenetic maps of BTA4/OAR4/CHI4 were constructed and compared with HSA7 revealing five main conserved segments and complex chromosome rearrangements, including a centromere repositioning, differentiating HSA7 and BTA4/OAR4/CHI4.  相似文献   

8.
Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.  相似文献   

9.
The cosegregation of ten coding loci has been investigated, in a panel of 37 somatic cell hybrids resulting from the fusion of a hamster cell line and river buffalo lymphocytes, by use of Southern hybridization technique. Five syntenic groups, TCRB-PGY3, ASS-ABL, FUCA1P-CRYG, MBP-YES1, and CGN1-ACTA1, previously assigned to cattle as U13, U16, U17, U28, and U29 respectively, were also found to be syntenic in buffalo. Based on the extensive syntenic conservation and banding homology between cattle and river buffalo, comparative mapping predicts the localization of these syntenic groups on river buffalo Chromosomes (Chrs) :BBU7, BBU12, BBU2q, BBU22, and BBU4q respectively as they have been previously localized on cattle Chrs BTA4, BTA11, BTA2, BTA24 & BTA28. Received: 2 April 1996 / Accepted: 4 July 1996  相似文献   

10.
We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19)), near AHR, and 15q24 (P = 5.2 × 10(-14)), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.  相似文献   

11.
12.
A preliminary radiation hybrid (RH) map containing 50 loci on chromosome 7 of the domestic river buffalo Bubalus bubalis (BBU; 2n = 50) was constructed based on a comparative mapping approach. The RH map of BBU7 includes thirty-seven gene markers and thirteen microsatellites. All loci have been previously assigned to Bos taurus (BTA) chromosome BTA6, which is known for its association with several economically important milk production traits in cattle. The map consists of two linkage groups spanning a total length of 627.9 cR(5,000). Comparative analysis of the BBU7 RH(5,000) map with BTA6 in cattle gave new evidence for strong similarity between the two chromosomes over their entire length and exposed minor differences in locus order. Comparison of the BBU7 RH(5,000) map with the Homo sapiens (HSA) genome revealed similarity with a large chromosome segment of HSA4. Comparative analysis of loci in both species revealed more variability than previously known in gene order and several chromosome rearrangements including centromere relocation. The data obtained in our study define the evolutionarily conserved segment on BBU7 and HSA4 to be between 3.5 megabases (Mb) and 115.8 Mb in the HSA4 (genome build 36) DNA sequence.  相似文献   

13.
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.  相似文献   

14.
15.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

16.
Sheep chromosome 2q (OAR2q), which is homologous with human chromosome 2q (HSA2q), and cattle chromosome 2 (BTA2), is known to contain several loci contributing to carcass traits. However, the chromosomal rearrangements differentiating these chromosomes among the three species have not yet been determined and thus precise correspondences between the locations of sheep and human genes are not known. Twenty-six genes from HSA2q (2q21.1-->2q36) have been assigned to OAR2q by genetic linkage mapping to refine this area of the sheep genome. Seventy-six genes were initially selected from HSA2q. Sixty-eight percent of the PCR primer sets designed for these genes amplified successfully in sheep, and 34% amplified polymorphic products. Part of the proximal arm of OAR2q was found to be inverted compared with HSA2q. The breakpoint has been localised near the growth differentiation factor 8 gene (GDF8), spanning 380 kb between the positions of the hypothetical protein (FLJ20160) (HSA2:191008944-191075046) and glutaminase (GLS) (HSA2:191453847-191538510) (Build36.1).  相似文献   

17.
Fluorescence in situ hybridization (FISH) analyses were used to order 16 bacterial artificial chromosomes (BAC) clones containing loci from the bovine lymphocyte antigen (BoLA) class I and III regions of bovine chromosome 23 (BTA23). Fourteen of these BACs were assigned to chromosomal band locations of mitotic and pachytene chromosomes by single- and dual-colour FISH. Dual-colour FISH confirmed that class II DYA is proximal to and separated from BoLA class I genes by approximately three chromosome bands. The FISH results showed that tumour necrosis factor alpha (TNFA), heat shock protein 70 (HSP70.1) and 21 steroid dehydrogenase (CYP21) are closely linked in the region of BTA23 band 22 along with BoLA class I genes, and that male enhanced antigen (MEA) mapped between DYA and the CYP21/TNFA/HSP70.1 gene region. All BAC clones containing BoLA class I genes mapped distal to CYP21/TNFA/HSP70.1 and centromeric to prolactin (PRL). Myelin oligodendrocyte glycoprotein (MOG) was shown to be imbedded within the BoLA class I gene cluster. The cytogenetic data confirmed that the disrupted distribution of BoLA genes is most likely the result of a single large chromosomal inversion. Similar FISH results were obtained when BoLA DYA and class I BAC clones were mapped to discrete chromosomal locations on the BTA homologue in white-tailed deer, suggesting that this chromosomal inversion predates divergence of the advanced ruminant families from a common ancestor.  相似文献   

18.
We have applied a targeted physical mapping approach, based on the isolation of bovine region-specific large-insert clones using homologous human sequences and chromosome microdissection, to enhance the physical gene map of the telomeric region of BTA18 and to prove its evolutionary conservation. The latter is a prerequisite to exploit the dense human gene map for future positional cloning approaches. Partial sequencing and homology search were used to characterize 20 BACs targeted to the BTA18q2.4-q2.6 region. We used fluorescence in situ hybridization (FISH) to create physical maps of 11 BACs containing 15 gene loci; these BACs served as anchor loci. Using these approaches, 12 new gene loci (CKM, STK13, PSCD2, IRF3, VASP, ACTN4, ITPKC, CYP2B6, FOSB, DMPK, MIA, SIX5) were assigned on BTA18 in the bovine cytogenetic map. A resolved physical map of BTA18q2.4-q2.6 was developed, which encompasses 28 marker loci and a comparative cytogenetic map that contains 15 genes. The mapping results demonstrate the high evolutionary conservation between the telomeric region of BTA18q and HSA19q.  相似文献   

19.
Chromosome comparisons usingin situhybridization of all human chromosome-specific libraries on Capuchin monkey (Cebus capucinus,Cebidae, Platyrrhini) metaphases were performed with a new technique simultaneously revealing a G-banding and chromosome “painting.” A complete homology between human (HSA) andC. capucinus(CCA) chromosomes was demonstrated, except for constitutive heterochromatin. ElevenC. capucinuschromosomes are homologous to 11 human chromosomes: CCA 2 = HSA 4; CCA 3 = HSA 6; CCA 12 = HSA 9; CCA 16 = HSA 11; CCA 10 = HSA 12; CCA 11 = HSA 13; CCA 20 = HSA 17; CCA 8 = HSA 19; CCA 23 = HSA 20; CCA 24 = HSA 22; and CCA X = HSA X. TenC. capucinuschromosomes are homologous to parts of human chromosomes: CCA 13 = HSA 8q; CCA 14 = HSA 2q; CCA 15 = HSA 1p + 1q proximal; CCA 17 = HSA 7 part; CCA 18 and 19 = HSA 3 part; CCA 21 and 22 = HSA 1q distal; CCA 25 = HSA 10p; and CCA 26 = HSA 15q part. SixC. capucinuschromosomes are homologous to parts of two human chromosomes: CCA 1 = HSA 5 + 7 part; CCA 4 = HSA 2p + q proximal + 16q; CCA 5 = HSA 10q + 16p; CCA 6 = HSA 14 + 15 part; CCA 7 = HSA 8p + 18; and CCA 9 = HSA 3 part + 21. Many previous banding comparisons were confirmed but several cryptic or complex rearrangements could be identified. With theC. capucinuskaryotype having been shown to be fairly ancestral, this comparison opens the possibility to compare human chromosomes to most Cebidae species.  相似文献   

20.
The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号