首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H+-translocating pyrophosphatase (H+-PPase) is a proton pump that is found in a wide variety of organisms. It consists of a single polypeptide chain that is thought to possess between 14 and 17 transmembrane domains. To determine the topological arrangement of its conserved motifs and transmembrane domains, we carried out a cysteine-scanning analysis by determining the membrane topology of cysteine substitution mutants of Streptomyces coelicolor H+-PPase expressed in Escherichia coli using chemical reagents. First, we prepared a synthetic DNA that encoded the enzyme and constructed a functional cysteine-less mutant by substituting the four cysteine residues. We then introduced cysteine residues individually into 42 sites in its hydrophilic regions and N- and C-terminal segments. Thirty-six of the mutant enzymes retained both pyrophosphatase and H+-translocating activities. Analysis of 29 of these mutant forms using membrane-permeable and -impermeable sulfhydryl reagents revealed that S. coelicolor H+-PPase contains 17 transmembrane domains and that several conserved segments, such as the substrate-binding domains, are exposed to the cytoplasm. Four essential serine residues that were located on the cytoplasmic side were also identified. A marked characteristic of the S. coelicolor enzyme is a long additional sequence that includes a transmembrane domain at the C terminus. We propose that the basic structure of H+-PPases has 16 transmembrane domains with several large cytoplasmic loops containing functional motifs.  相似文献   

2.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

3.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

4.
5.
Lipase maturation factor 1 (LMF1) is predicted to be a polytopic protein localized to the endoplasmic reticulum (ER) membrane. It functions in the post-translational attainment of enzyme activity for both lipoprotein lipase and hepatic lipase. By using transmembrane prediction methods in mouse and human orthologs, models of LMF1 topology were constructed and tested experimentally. Employing a tagging strategy that used insertion of ectopic glycan attachment sites and terminal fusions of green fluorescent protein, we established a five-transmembrane model, thus dividing LMF1 into six domains. Three domains were found to face the cytoplasm (the amino-terminal domain and loops B and D), and the other half was oriented to the ER lumen (loops A and C and the carboxyl-terminal domain). This representative model shows the arrangement of an evolutionarily conserved domain within LMF1 (DUF1222) that is essential to lipase maturation. DUF1222 comprises four of the six domains, with the two largest ones facing the ER lumen. We showed for the first time, using several naturally occurring variants featuring DUF1222 truncations, that Lmf1 interacts physically with lipoprotein lipase and hepatic lipase and localizes the lipase interaction site to loop C within DUF1222. We discuss the implication of our results with regard to lipase maturation and DUF1222 domain structure.  相似文献   

6.
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12- nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue- specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.  相似文献   

7.
Sphingolipids are diverse lipids with essential, and occasionally opposing, functions in the cell and therefore tight control over biosynthesis is vital. Mechanisms governing this regulation are not understood. Initial steps in sphingolipid biosynthesis take place on the cytosolic face of the endoplasmic reticulum (ER). Serine palmitoyltransferase (SPT) is an ER-resident enzyme catalyzing the first-committed step in sphingolipid biosynthesis. Not surprisingly, SPT activity is tightly regulated. ORMDLs are ER-resident proteins recently identified as regulators of SPT activity. ORMDL proteins interact directly with SPT but the nature of this interaction is unknown. ORMDL protein sequences contain hydrophobic regions, yet algorithm-based predictions of transmembrane segments are highly ambiguous, making topology of this key regulator unclear. Here we report use of substituted cysteine accessibility to analyze topology of mammalian ORMDLs. We constructed multiple mutant ORMDLs, each containing a single cysteine strategically placed along the protein length. Combined use of selective membrane permeabilization with an impermeant cysteine modification reagent allowed us to assign transmembrane and cytosolic segments of ORMDL. We confirmed that mammalian ORMDL proteins transit the membrane four times, with amino- and carboxy termini facing the cytosol along with a large cytosolic loop. This model will allow us to determine details of the ORMDL-SPT interaction and identify regions acting as the “lipid sensor” to detect changes in cellular sphingolipid levels. We also observe that SPT and ORMDL are substantially resistant to extraction from membranes with non-ionic detergent, indirectly suggesting that both proteins reside in a specialized subdomain of the ER.  相似文献   

8.
There is preliminary experimental evidence indicating that the major outer-membrane protein (MOMP) of Chlamydia is a porin. We tested this hypothesis for the MOMP of the mouse pneumonitis serovar of Chlamydia trachomatis using two secondary structure prediction methods. First, an algorithm that calculates the mean hydrophobicity of one side of putative beta-strands predicted the positions of 16 transmembrane segments, a structure common to known porins. Second, outer loops typical of porins were assigned using an artificial neural network trained to predict the topology of bacterial outer-membrane proteins with a predominance of beta-strands. A topology model based on these results locates the four variable domains (VDs) of the MOMP on the outer loops and the five constant domains on beta-strands and the periplasmic turns. This model is consistent with genetic analysis and immunological and biochemical data that indicate the VDs are surface exposed. Furthermore, it shows significant homology with the consensus porin model of the program FORESST, which contrasts a proposed secondary structure against a data set of 349 proteins of known structure. Analysis of the MOMP of other chlamydial species corroborated our predicted model.  相似文献   

9.
The NADPH oxidase Nox4 is a multi-pass membrane protein responsible for the generation of reactive oxygen species that are implicated in cellular signaling but may also cause pathological situations when dysregulated. Although topological organization of integral membrane protein dictates its function, only limited experimental data describing Nox4's topology are available.To provide deeper insight on Nox4 structural organization, we developed a novel method to determinate membrane protein topology in their cellular environment, named Topological Determination by Ubiquitin Fusion Assay (ToDUFA). It is based on the proteolytic capacity of the deubiquitinase enzymes to process ubiquitin fusion proteins. This straightforward method, validated on two well-known protein's topologies (IL1RI and Nox2), allowed us to discriminate rapidly the topological orientation of protein's domains facing either the nucleocytosolic or the exterior/luminal compartments. Using this method, we were able for the first time to determine experimentally the topology of Nox4 which consists of 6 transmembrane domains with its N- and C-terminus moieties facing the cytosol. While the first, third and fifth loops of Nox4 protein are extracellular; the second and fourth loops are located in the cytosolic side. This approach can be easily extended to characterize the topology of all others members of the NADPH oxidase family or any multi-pass membrane proteins.Considering the importance of protein topology knowledge in cell biology research and pharmacological development, we believe that this novel method will represent a widely useful technique to easily uncover complex membrane protein's topology.  相似文献   

10.
Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments. Results showed that following ribosome docking on the ER membrane, the nascent polypeptide was shielded from the cytosol as it emerged from the ribosome exit tunnel. Extracellular loops followed a well defined path through the ribosome, the ribosome translocon junction, the Sec61-translocon pore, and into the ER lumen coincident with chain elongation. In contrast, intracellular loops (ICLs) and C-terminalresidues exited the ribosome into a cytosolically shielded environment and remained inaccessible to both cytosolic and lumenal compartments until translation was terminated. Shielding of ICL1 and ICL2, but not the C terminus, became resistant to maneuvers that disrupt electrostatic ribosome interactions. Thus, the early folding landscape of polytopic proteins is shaped by a spatially restricted environment localized within the assembled ribosome translocon complex.  相似文献   

11.
《Molecular membrane biology》2013,30(2-3):114-122
Abstract

Glucosyltransferases (Gtrs) and O-acetyltransferase (Oac) are integral membrane proteins embedded within the cytoplasmic membrane of Shigella flexneri. Gtrs and Oac are responsible for unidirectional host serotype conversion by altering the epitopic properties of the bacterial surface lipopolysaccharide (LPS) O-antigen. In this study, we present the membrane topology of a recently recognized Gtr, GtrIc, which is known to mediate S. flenxeri serotype switching from 1a to 1c. The GtrIc topology is shown to deviate from those typically seen in S. flexneri Gtrs. GtrIc has 11 hydrophilic loops, 10 transmembrane helices, a double intramembrane dipping loop 5, and a cytoplasmic N- and C-terminus. Along with a unique membrane topology, the identification of non-critical Gtr-conserved peptide motifs within large periplasmic loops (N-terminal D/ExD/E and C-terminal KK), which have previously been proven essential for the activity of other Gtrs, challenge current opinions of a similar mechanism for enzyme function between members of the S. flexneri Gtr family.  相似文献   

12.
Identification of mouse palmitoyl-coenzyme A Delta9-desaturase   总被引:5,自引:0,他引:5  
Stearoyl-coenzyme A desaturase (SCD) catalyzes the desaturation of saturated fatty acids to monounsaturated fatty acids in mammalian cells. Currently, there are four known enzymatic isoforms (SCD1-SCD4) in the mouse genome. The physiological roles for multiple SCD isoforms and their substrate specificities are unknown at present. We report here distinct substrate specificities for the mouse SCD isoforms. Each SCD isoform was able to complement the ole1 mutation in Saccharomyces cerevisiae through heterologous expression of transgenic SCD. Fatty acid analysis showed that mouse SCD1, SCD2, and SCD4 desaturate both C18:0 and C16:0, whereas mouse SCD3 uses C16:0 but not C18:0. We identify SCD3 as a mammalian palmitotyl-CoA Delta9-desaturase, and its existence in mouse helps explain distinct physiological roles for each SCD isoform.  相似文献   

13.
The Na/Ca-K exchanger (NCKX) is a polytopic membrane protein that plays a critical role in Ca(2+) homeostasis in retinal rod and cone photoreceptors. The NCKX1 isoform is found in rods, while the NCKX2 isoform is found in cones, in retinal ganglion cells, and in various parts of the brain. The topology of the Na/Ca-K exchanger is thought to consist of two large hydrophilic loops and two sets of transmembrane spanning segments (TMs). The first large hydrophilic loop is located extracellularly at the N-terminus; the other is cytoplasmic and separates the two sets of TMs. The TMs consist of either five and five membrane spanning helices or five and six membrane spanning helices, depending upon the predictive algorithm used. Little specific information is yet available on the orientation of the various membrane spanning helices and the localization of the short loops connecting these helices. In this study, we have determined which of the connecting loops are exposed to the extracellular milieu using two different methods: accessibility of substituted cysteine residues and insertion of N-glycosylation sites. The two methods resulted in a consistent NCKX topology in which the two sets of TMs each contain five membrane spanning helices. Our new model places what was previously membrane spanning helix six in the cytoplasm, which places the C-terminus on the extracellular surface. Surprisingly, this NCKX topology model is different from the current NCX topology model with respect to the C-terminal three membrane helices.  相似文献   

14.
Hepatitis C virus proteins are synthesized as a polyprotein cleaved by a signal peptidase and viral proteases. The behaviour of internal signal sequences at the C-terminus of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 is essential for the topology of downstream polypeptides. We determined the topology of these transmembrane domains before and after signal sequence cleavage by tagging E1 and E2 with epitopes and by analysing their accessibility in selectively permeabilized cells. We showed that, after cleavage by signal peptidase in the endoplasmic reticulum, the C-terminal orientation of these transmembrane domains changed from luminal to cytosolic. The dynamic behaviour of these transmembrane domains is unique and it is linked to their multifunctionality. By reorienting their C-terminus toward the cytosol and being part of a transmembrane domain, the signal sequences at the C-terminus of E1 and E2 contribute to new functions: (i) membrane anchoring; (ii) E1E2 heterodimerization; and (iii) endoplasmic reticulum retention.  相似文献   

15.
RKTG (Raf kinase trapping to Golgi) is exclusively localized at the Golgi apparatus and functions as a spatial regulator of Raf-1 kinase by sequestrating Raf-1 to the Golgi. Based on the structural similarity with adiponectin receptors, RKTG was predicted to be a seven-transmembrane protein with a cytosolic N-terminus, distinct from classical GPCRs (G-protein-coupled receptors). We analysed in detail the topology and functional domains of RKTG in this study. We determined that the N-terminus of RKTG is localized on the cytosolic side. Two short stretches of amino acid sequences at the membrane proximal to the N- and C-termini (amino acids 61-71 and 299-303 respectively) were indispensable for Golgi localization of RKTG, but were not required for the interaction with Raf-1. The three loops facing the cytosol between the transmembrane domains had different roles in Golgi localization and Raf-1 interaction. While the first cytosolic loop was only important for Golgi localization, the third cytosolic loop was necessary for both Golgi localization and Raf-1 sequestration. Taken together, these findings suggest that RKTG is a type III membrane protein with its N-terminus facing the cytosol and multiple sequences are responsible for its localization at the Golgi apparatus and Raf-1 interaction. As RKTG is the first discovered Golgi protein with seven transmembrane domains, the knowledge derived from this study would not only provide structural information about the protein, but also pave the way for future characterization of the unique functions of RKTG in the regulation of cell signalling.  相似文献   

16.
The cortical endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) epidermal cells is a network of tubules and cisternae undergoing dramatic rearrangements. Reticulons are integral membrane proteins involved in shaping ER tubules. Here, we characterized the localization, topology, effect, and interactions of five Arabidopsis thaliana reticulons (RTNs), isoforms 1-4 and 13, in the cortical ER. Our results indicate that RTNLB13 and RTNLB1-4 colocate to and constrict the tubular ER membrane. All five RTNs preferentially accumulate on ER tubules and are excluded from ER cisternae. All isoforms share the same transmembrane topology, with N and C termini facing the cytosol and four transmembrane domains. We show by Förster resonance energy transfer and fluorescence lifetime imaging microscopy that several RTNs have the capacity to interact with themselves and each other, and we suggest that oligomerization is responsible for their residence in the ER membrane. We also show that a complete reticulon homology domain is required for both RTN residence in high-curvature ER membranes and ER tubule constriction, yet it is not necessary for homotypic interactions.  相似文献   

17.
The Niemann-Pick C1 (NPC1) protein is predicted to be a polytopic glycoprotein, and it contains a region with extensive homology to the sterol-sensing domains (SSD) of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-R) and sterol regulatory element binding protein cleavage-activating protein (SCAP). To aid the functional characterization of NPC1, a model of NPC1 topology was evaluated by expression of epitope-tagged NPC1 proteins and investigation of epitope accessibility in selectively permeabilized cells. These results were further confirmed by expression of NPC1 and identification of glycosylated domains that are located in the lumen of the endoplasmic reticulum. Our data indicate that this glycoprotein contains 13 transmembrane domains, 3 large and 4 small luminal loops, 6 small cytoplasmic loops, and a cytoplasmic tail. Furthermore, our data show that the putative SSD of NPC1 is oriented in the same manner as those of HMG-R and SCAP, providing strong evidence that this domain is functionally important.  相似文献   

18.
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

19.
The interferon-induced transmembrane proteins (IFITMs) restrict infection by numerous viruses, yet the importance and regulation of individual isoforms remains unclear. Here, we report that murine IFITM1 (mIFITM1) is palmitoylated on one nonconserved cysteine and three conserved cysteines that are required for anti-influenza A virus activity. Additionally, palmitoylation of mIFITM1 regulates protein stability by preventing proteasomal degradation, and modification of the nonconserved cysteine at the mIFITM1 C terminus supports an intramembrane topology with mechanistic implications.  相似文献   

20.
The Golgi anti-apoptotic protein (GAAP) is a hydrophobic Golgi protein that regulates intracellular calcium fluxes and apoptosis. GAAP is highly conserved throughout eukaryotes and some strains of vaccinia virus (VACV) and camelpox virus. Based on sequence, phylogeny, and hydrophobicity, GAAPs were classified within the transmembrane Bax inhibitor-containing motif (TMBIM) family. TMBIM members are anti-apoptotic and were predicted to have seven-transmembrane domains (TMDs). However, topology prediction programs are inconsistent and predicted that GAAP and other TMBIM members have six or seven TMDs. To address this discrepancy, we mapped the transmembrane topology of viral (vGAAP) and human (hGAAP), as well as Bax inhibitor (BI-1). Data presented show a six-, not seven-, transmembrane topology for vGAAP with a putative reentrant loop at the C terminus and both termini located in the cytosol. We find that this topology is also conserved in hGAAP and BI-1. This places the charged C terminus in the cytosol, and mutation of these charged residues in hGAAP ablated its anti-apoptotic function. Given the highly conserved hydrophobicity profile within the TMBIM family and recent phylogenetic data indicating that a GAAP-like protein may have been the ancestral progenitor of a subset of the TMBIM family, we propose that this vGAAP topology may be used as a model for the remainder of the TMBIM family of proteins. The topology described provides valuable information on the structure and function of an important but poorly understood family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号