首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang SK  Kim YS  Kong YJ  Song KH  Chang YC  Park YG  Ko JH  Lee YC  Kim CH 《Proteomics》2008,8(16):3317-3328
By employing proteomics analysis tool, we examined the effects of GD3 synthase expression on the differentiation properties of chronic myelogenous leukemia (CML)-derived leukemia cells K562. Forced expression of GD3 synthase induced erythroid differentiation as determined by an increase in glycophorin A expression and synthesis of hemoglobins. The proteomic analysis revealed that 15 proteins were increased by GD3 synthase. In contrast, we observed three protein gel spots decreased in contents in the cell membranes of GD3 synthase-transfected K562 cells. Among the increased proteins, membrane transglutaminase 2 (TG2) was specifically increased in the cell membrane of GD3 synthase-transfected K562 cells. Then, we generated the GD3 synthase-transfected cells in the K562 cells. Interestingly, the TG2 level was increased in GD3 synthase-transfected cells compared with vector- and plasma membrane-associated ganglioside sialidase (Neu3)-transfected cells. In addition, its ability to be photoaffinity-labeled with [alpha-(32)P]GTP was also increased in the GD3 synthase- and TG2-transfected cells. Moreover, small interfering RNA (siRNA) analysis for the GD3 synthase showed the decrease or abolishment of the membrane TG2. Finally, GD3 synthase-transfected cells accelerated the erythroid differentiation. Therefore, we propose that the recruitment of TG2 into membranes by GD3 might play an important role in the erythroid differentiation in K562 cells.  相似文献   

2.
3.
Ha KT  Lee YC  Cho SH  Kim JK  Kim CH 《Molecules and cells》2004,17(2):267-273
Endogenous expression of human membrane type ganglioside sialidase (Neu3) was examined in various cell lines including NB-1, U87MG, SK-MEL-2, SK-N-MC, HepG2, Hep3B, Jurkat, HL-60, K562, ECV304, Hela and MCF-7. Expression was detected in the neuroblastoma cell lines NB-1 and SK-N-MC, and also in erythroleukemia K562 cells, but not in any other cells. We isolated a Neu3 cDNA from K562 cells and expressed a His-tagged derivative in a bacterial expression system. The purified recombinant product of approximately 48 kDa had sialidase activity toward 4-methyl-umbelliferyl-alpha-D-N-acetylneuraminic acid (4MU-NeuAc). The optimal pH of the purified Neu3 protein for GD3 ganglioside was 4.5. The enzyme also efficiently hydrolyzed GD3, GD1a, GD1b and GM3 whereas sialyllactose, 4MU-NeuAc, GM1 and GM2 were poor substrates, and it had no activity against sialylated glycoproteins such as fetuin, transferrin and orosomucoid. We conclude that the sialidase activity of Neu3 is specific for gangliosides.  相似文献   

4.
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.  相似文献   

5.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   

6.
Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually "switched on" activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% and -80%) of the mRNA of the anti-apoptotic factors Bcl-XL and Bcl-2, respectively, and an almost total disappearance of Bcl-2 protein. In addition, gene expression and activity of Bcr-Abl underwent a 35% diminution, together with a marked decrease of Bcr-Abl-dependent Src and Lyn kinase activity. Thus, the antiapoptotic axis Bcr-Abl, Src, and Lyn, which stimulates the formation of Bcl-XL and Bcl-2, was remarkably weakened. The ultimate consequences of these modifications were an increased susceptibility to apoptosis of K562 cells and a marked reduction of their proliferation rate. The molecular link between Neu2 activity and Bcr-Abl signaling pathway may rely on the desialylation of some cytosolic glycoproteins. In fact, three cytosolic glycoproteins, in the range 45-66 kDa, showed a 50-70% decrease of their sialic acid content upon Neu2 expression, supporting their possible role as modulators of the Bcr-Abl complex.  相似文献   

7.
P Mayeux  C Billat  R Jacquot 《FEBS letters》1987,211(2):229-233
Murine erythroleukaemia cells represent erythroid precursors blocked near the CFU-E or proerythroblast stage. In contrast to their non-leukaemic equivalents, neither their proliferation nor their differentiation seems to be affected by erythropoietin. However, we show in this paper that both uncommitted and committed, benzidine-positive, cells bind iodinated erythropoietin. The binding is of high affinity (Kd = 490 +/- 160 pM) and reversible with a half-life of the complex of 77 +/- 19 min. The number of binding sites is low (300-600 per cell). In contrast the haematopoietic non-erythroid cell lines HL 60 and L 1210 and the myeloid-erythroid human cell line K 562 do not exhibit specific binding. If these binding sites represent true hormone receptors, their presence on a permanent cell line should facilitate erythropoietin receptor purification.  相似文献   

8.
9.
Kang SK  Lee JY  Chung TW  Kim CH 《FEBS letters》2004,577(3):361-366
Transglutaminase 2 (TG2) is a GTP-binding protein with transglutaminase activity. Despite advances in the characterization of TG2 functions and their impact on cellular processes, the role of TG2 in Human chronic myelogenous leukemia K562 cell line is still poorly understood. To understand the biological significance of TG2 during the differentiation of K562 cells, we established and characterized K562 cells that specifically express TG2. Non-transfected K562 cells showed the increase of membrane-bound-TG2 level after 3 days in the response to Hemin and all trans-retinoic acid (tRA), indicating that membrane recruitment of TG2 is occurred during the erythroid differentiation. However, membrane recruitment of TG2 in TG2-transfected cells revealed within earlier time period, compared with that in vector-transfected cells. The ability of membrane-bound-TG2 to be photoaffinity-labeled with [alpha-32P]GTP was also increased in TG2-transfected cells. TG2-transfected cells activated Akt phosphorylation and inactivated ERK1/2 phosphorylation, compared with vector-transfected cells. Furthermore, phosphorylation of CREB, one of the Akt substrates, was increased in TG2-transfected cells and this phenomenon was confirmed by RT-PCR analysis of several marker genes related with erythroid lineage in the absence of PI3K specific inhibitor, Wortmannin, indicating that PI3K/Akt signaling pathway also involved in the differentiation of the cell. Finally, as results of benzidine positive staining as well as hemoglobinization analysis, overexpression of TG2 revealed acceleration of the erythroid differentiation of K562 cells. Taken together, there was no increased TG2 expression level in the response of Hemin/tRA and delayed differentiation in vector transfected cells than in TG2-transfected cells, suggesting that suppression of TG2 expression may retard the erythroid differentiation of K562 cells. Therefore, our study may give a new insight for another aspect of the development of this disease.  相似文献   

10.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

11.
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.  相似文献   

12.
K562 cells contain a Bcr-Abl chimeric gene and differentiate into various lineages in response to different inducers. We studied the role of the mitogen-activated protein kinase (MAPK) kinase 1 (MEK1)/extracellular signal-regulated kinase (ERK) pathway during the erythroid differentiation of K562 cells induced by tyrosine kinase inhibitors (herbimycin A or STI571), using genetically modified cells (constitutively MEK1-activated K562: K562/MEK1, and inducible ERK-inactivated K562: K562/CL100). Basal expression of glycophorin A was markedly reduced in K562/MEK1 cells compared with that in parental cells, while it was augmented in K562/CL100 cells. Herbimycin A and STI571 differentiated K562 cells accompanying with the transient down-regulated ERK. Moreover, the erythroid differentiation was markedly suppressed in K562/MEK1 cells, and early down-regulation of ERK activity was not observed in these cells. In contrast, the induction of ERK-specific phosphatase in K562/CL100 cells potentiated erythroid differentiation. Once the phosphatase was induced, the initial ERK activity became repressed and its early down-regulation by the inhibition of Bcr-Abl was marked and prolonged. These results demonstrate that the erythroid differentiation of K562 cells induced by herbimycin A or STI571 requires the down-regulation of MEK1/ ERK pathway.  相似文献   

13.
Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells.  相似文献   

14.
Sialidase activity has been studied in the human erythroleukemia K 562 cell line grown in vitro. The total sialidase activity was determined using disialoganglioside GD1a and fetuin as exogenous substrates. The enzymatic activity was stimulated by 0.08% Triton X-100 and reached the highest level at pH 4.0. Results obtained showed that gangliosides are hydrolysed more extensively than glycoproteins by K 562 sialidases. This finding could suggest that endogenous gangliosides may be the main source of metabolically available sialic acid in K 562 cell line. After treatment of K 562 cells by Adriamycin (40 nM), a potent anticancer drug, sialidase activity decreased by 40% as compared to control cells. This decrease occurs early during the first day of incubation with Adriamycin. This inhibition of sialidase activity could explain previous results obtained in our laboratory which show an enhanced sialylation of the membrane glycoconjugates after Adriamycin treatment.  相似文献   

15.
细胞周期的测量是细胞增殖动力学的研究基础。通过添加30μmol·L-1氯化高铁血红素(Hemin)诱导人慢性髓系白血病K562细胞红系分化,利用5-溴脱氧尿嘧啶核苷(BrdU)与7-AAD双染的方法检测Hemin诱导的K562红系分化细胞对细胞周期各期比例的影响,未诱导的K562细胞周期各期比例作为对照,检测发现Hemin诱导的K562红系分化细胞对其细胞周期相对值无明显影响。应用BrdU间隔染色结合流式细胞术的方法,通过分析BrdU间隔染色后BrdU阳性细胞群的动态变化规律,从而推算出K562红系分化细胞的倍增时间及细胞周期各期时长。根据测量结果发现,未诱导的K562细胞总倍增时间约为20 h,与通过生长曲线公式法计算倍增时间的结果相符,Hemin诱导的K562细胞的细胞周期倍增时长约为23 h。Hemin诱导的K562红系分化细胞较未诱导的K562细胞倍增时间与各期时长无明显差异。因此,Hemin诱导K562细胞红系分化对其细胞周期绝对值及相对值均无明显影响。  相似文献   

16.
17.
18.
Basic fibroblast growth factor (bFGF) is produced by bone marrow stromal cells as well as by normal and leukemic hematopoietic cells. In this study, we examine the direct effects of bFGF on erythroid differentiation in K562 cells in order to determine whether bFGF can promote the expression of a primitive phenotype. Low levels of bFGF inhibited erythroid differentiation as evidenced by decreased expression of glycophorin A and increased expression of c-kit. bFGF also increased both the numbers and the sizes of colonies of K562 cells in soft agar assays. The addition of TGF-beta to these cells induced erythroid differentiation which resulted in an increase in glycophorin A and a decrease in c-kit. The simultaneous addition of bFGF and TGF-beta to K562 cells prevented both the TGF-beta-mediated increase in glycophorin A expression and the decrease in c-kit expression associated with erythroid differentiation. bFGF antagonised the TGF-beta-mediated promotion of erythroid differentiation in K562 cells in a dose dependent manner and these two cytokines counteracted each other on an approximately molar basis. These results indicate that bFGF alone increases expression of c-kit and promotes a primitive phenotype in K562 cells. In addition, bFGF counteracts the effects of differentiation-inducing cytokines, such as TGF-beta, on hematopoietic cells. It is therefore possible that enhanced production of bFGF by leukemic cells could contribute to their neoplastic phenotype by opposing the effects of negative regulators or cytokines that induce differentiation.  相似文献   

19.
Coproporphyrinogen oxidase (CPOX), the sixth enzyme in the heme-biosynthetic pathway, catalyzes oxidative decarboxylation of coproporphyrinogen to protoporphyrinogen and is located in the intermembrane space of mitochondria. To clarify the importance of CPOX in the regulation of heme biosynthesis in erythroid cells, we established human erythroleukemia K562 cells stably expressing mouse CPOX. The CPOX cDNA-transfected cells had sevenfold higher CPOX activity than cells transfected with vector only. Expression of ferrochelatase and heme content in the transfected cells increased slightly compared with the control. When K562 cells overexpressing CPOX were treated with delta-aminolevulinic acid (ALA), most became benzidine-positive without induction of the expression of CPOX or ferrochelatase, and the heme content was about twofold higher than that in ALA-treated control cells. Increases in cellular heme concomitant with a marked induction of the expression of heme-biosynthetic enzymes, including CPOX, ferrochelatase and erythroid-specific delta-aminolevulinic acid synthase, as well as of alpha-globin synthesis, were observed when cells were treated with transforming growth factor (TGF)beta 1. These increases in the transfected cells were twice those in control cells, indicating that overexpression of CPOX enhanced induction of the differentiation of K562 cells mediated by TGF beta 1 or ALA. Conversely, the transfection of antisense oligonucleotide to human CPOX mRNA into untreated and TGF beta 1-treated K562 cells led to a decrease in heme production compared with sense oligonucleotide-transfected cells. These results suggest that CPOX plays an important role in the regulation of heme biosynthesis during erythroid differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号