首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

The import of solutes into the bacterial cytoplasm involves several types of membrane transporters, which may be driven by ATP hydrolysis (ABC transporters) or by an ion or H+ electrochemical membrane potential, as in the tripartite ATP-independent periplasmic system (TRAP). In both the ABC and TRAP systems, a specific periplasmic protein from the ESR family (Extracytoplasmic Solute Receptors) is often involved for the recruitment of the solute and its presentation to the membrane complex. In Rhodobacter sphaeroides, TakP (previously named SmoM) is an ESR from a TRAP transporter and binds α-keto acids in vitro.  相似文献   

3.
Here we report an approach to generate a knock-in mouse model using an ‘ends-out’ gene replacement vector to substitute the murine Parp-1 (mParp-1) coding sequence (32 kb) with its human orthologous sequence (46 kb). Unexpectedly, examination of mutant ES cell clones and mice revealed that site-specific homologous recombination was mimicked in three independently generated ES cell clones by bidirectional extension of the vector homology arms using the endogenous mParp-1-flanking sequences as templates. This was followed by adjacent integration of the targeting vector, thus leaving the endogenous mParp-1 locus functional. A related phenomenon termed ‘ectopic gene targeting’ has so far only been described for ‘ends-in’ integration-type vectors in non-ES cell gene targeting. We provide reliable techniques to detect such ectopic gene targeting which represents an unexpected caveat in mouse genetic engineering that should be considered in the design and validation strategy of future gene knock-in approaches. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Over 60 Greenland glacial isolates were screened for plasmids and antibiotic resistance/sensitivity as the first step in establishing a genetic system. Sequence analysis of a small, cryptic, 1,950 bp plasmid, p54, from isolate GIC54, related to Arthrobacter agilis, showed a region similar to that found in theta replicating Rhodococcus plasmids. A 6,002 bp shuttle vector, pSVJ21, was constructed by ligating p54 and pUC18 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. Candidate Gram-positive recipients were chosen among glacial isolates based on phylogenetic relatedness, relatively short doubling times at low temperatures, sensitivity to antibiotics, and absence of indigenous plasmids. We developed an electroporation protocol and transformed seven isolates related to members of the Arthrobacter, Microbacterium, Curtobacterium, and Rhodoglobus genera with pSVJ21. Plasmid stability was demonstrated by successive transformation into Escherichia coli and four Gram-positive isolates, growth without antibiotic, and plasmid re-isolation. This shuttle vector and our transformation protocol provide the basis for genetic experiments with different high G+C Gram-positive hosts to study cold adaptation and expression of cold-active enzymes at low temperatures.  相似文献   

5.
Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The bar gene was introduced into the cork oak genome. Cork oak embryogenic masses were transformed using the Agrobacterium strain AGL1 which carried the plasmid pBINUbiBar. This vector harbours the genes, nptII and bar, the latter under control of the maize ubiquitin promoter. The transgenic embryogenic lines were cryopreserved. Varying activities of phosphinothricin acetyl transferase were detected among the lines, which carried 1–4 copies of the insert. Molecular and biochemical assays confirmed the stability and expression of the transgenes 3 months after thawing the cultures. These results demonstrate genetic engineering of herbicide tolerance in Quercus spp. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Rubén álvarez, Ricardo J. Ordás are contributed equally.  相似文献   

7.
We report the discovery and characterization of a glycosylated bacterial ABC-type phosphate transporter isolated from the peripheral blood mononuclear cell (PBMC) fraction of patients with visceral leishmaniasis (VL). Three disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) of 19, 56 and 65 kDa, respectively, had been identified and their purity, apparent mass and pI established by SDS-PAGE and isoelectric focusing. Western blot analyses showed that the 9-O-acetylated sialic acid is linked via α2→6 linkage to a subterminal N-acetylgalactosamine. For the 56 kDa protein, N- as well as O-glycosylations were demonstrated by specific glycosidase treatment and found to account for more than 9 kDa of the protein mass. The presence of sialic acids was further confirmed through thin layer chromatography, fluorimetric HPLC and electrospray ionization-mass spectrometry. The protein was identified by mass spectrometry and de novo sequencing of five tryptic fragments as a periplasmic ABC-type phosphate transporter of Pseudomonas aeruginosa. The amino acid sequences of the assigned peptides had 83–100% identity with the NCBI entry for a Pseudomonas transporter protein. Based on the recently reported X-ray structure of a human phosphate-binding protein, we predicted a 3D structural model for the 56 kDa protein using homology and threading methods. The most probable N- and O-glycosylation sites were identified by combinations of sequence motif-searching bioinformatics tools, solvent accessibility calculations, structural environment analyses and mass spectrometric data. This is the first reported glycosylation as well as sialylation of the periplasmic component of an ABC-type phosphate transporter protein and of one of few identified bacterial glycoproteins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The antimicrobial peptide CM4 is a 35-residue cationic peptide. To explore a new approach for the expression and purification of CM4 in Escherichia coli, the CM4 gene was cloned into the vector pET32a to construct an expression vector pET32a-CM4. The fusion protein Trx-CM4, purified by Ni2+-chelating chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant CM4. Purification of recombinant CM4 was achieved by reverse HPLC chromatography, and about 1.4 mg/l active recombinant CM4 with the purity more than 98% was obtained. The recombinant CM4 showed antimicrobial activities that were similar to synthetic one. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

9.
The spring–summer successions of phytoplankton and crustacean zooplankton were examined weekly in Meiliang Bay of the subtropical Lake Taihu in 2004 and 2005. During the study period, the ecosystem of Meiliang Bay was characterized by (i) clearly declined nitrogen compounds (nitrate, TN, and ammonium) and slowly increased phosphorus compounds (TP and SRP), (ii) increased total phytoplankton density and rapid replacement of chlorophyta (mainly Ulothrix) by cyanobacteria (mainly Microcystis), and (iii) rapid replacement of large-sized crustaceans (Daphnia and Moina) by small-sized ones (Bosmina, Limnoithona, and Ceriodaphnia). Results from the CCA and correlation analysis indicate that the spring-summer phytoplankton succession was primarily controlled by abiotic factors. Cyanobacteria were mainly promoted by increased temperature and decreased concentrations of nitrogen compounds. The pure contribution of crustacean was low for the variation of phytoplankton suggesting a weak top-down control by crustacean zooplankton in the subtropical Lake Taihu. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: L. Naselli-Flores  相似文献   

10.
A novel OSPGYRP gene encoding a rice proline-, glycine- and tyrosine-rich protein was isolated from cold-stress treated rice seedlings using suppression subtractive hybridization. Both amino acid sequence analysis and subcellular localization confirm that OsPGYRP is a novel protein involved in vesicle trafficking. The expression of the OSPGYRP gene was induced by cold, salt, and osmotic stress. In addition, expression of the OSPGYRP gene in E. coli increased the resistance to cold stress. These results show that OsPGYRP is a novel protein involved in vesicle trafficking and plays an important role in plant adaptation to stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Psychrobacter arcticus strain 273-4, which grows at temperatures as low as −10°C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (−10°C to −12°C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures.Temperature is one of the most important parameters that determine the distribution and extent of life on earth, and it does this by affecting cell structure and function. High temperatures break covalent bonds and ionic interactions between molecules, inactivating proteins and disrupting cell structures. Low temperatures reduce biochemical reaction rates and substrate transport and induce the formation of ice that damages cell structures. Not surprisingly, an organism''s compatibility with the temperature of its habitat is ultimately determined by its underlying genetic architecture.The strong emphasis in research on mesophile biology (temperatures in the 20°C to 37°C range) has given us a misimpression of the importance of cold on earth. However, 70% of the Earth''s surface is covered by oceans with average temperatures between 1°C and 5°C (11), 20% of the Earth''s terrestrial surface is permafrost (47), and a larger portion of the surface undergoes seasonal freezing, making our planet a predominantly cold environment. Hence, cold adaptation in the microbial world should be expected (55).Permafrost is defined as soils or sediments that are continuously exposed to a temperature of 0°C or less for at least 2 years (44). Permafrost temperatures range from −10°C to −20°C in the Arctic and from −10°C to −65°C in the Antarctic, and permafrost has low water activity, often contains small amounts of carbon (0.85 to 1%), and is subjected to prolonged exposure to damaging gamma radiation from 40K in soil minerals (49). Liquid water occurs as a very thin, salty layer surrounding the soil particles in the frozen layer. Despite the challenges of the permafrost, a variety of microorganisms successfully colonize this environment, and many microorganisms have been isolated from it (54, 70). The bacterial taxa most frequently isolated from the Kolyma permafrost of northeast Siberia include Arthrobacter, Exiguobacterium, Flavobacterium, Sphingomonas, and Psychrobacter (71). Rhode and Price (56) proposed that microorganisms can survive in frozen ice for very long periods due to the very thin film of water surrounding each cell that serves as a reserve of substrates. Permafrost is a more favorable environment than ice as a result of its heterogeneous soil particles and larger reservoirs of nutrients.The genus Psychrobacter comprises a group of Gram-negative, rod-shaped, heterotrophic bacteria, and many Psychrobacter species are capable of growth at low temperatures. Members of this genus can grow at temperatures between −10°C and 42°C, and they have frequently been isolated from various cold environments, including Antarctic sea ice, ornithogenic soil and sediments, the stomach contents of Antarctic krill (Euphausia), deep seawater, and permafrost (9, 36, 57, 70, 71, 76; http://www.bacterio.cict.fr/p/psychrobacter.html). Psychrobacter arcticus 273-4 is a recently described species (4) that was isolated from a 20,000- to 30,000-year-old continuously frozen permafrost horizon in the Kolyma region in Siberia that was not exposed to temperatures higher than 4°C during isolation (70). This strain, the type strain of the species, grows at temperatures ranging from −10°C to 28°C, has a generation time of 3.5 days at −2.5°C, exhibits excellent long-term survival under freezing conditions, and has temperature-dependent physiological modifications in membrane composition and carbon source utilization (50). The fact that Psychrobacter has been found to be an indicator genus for permafrost and other polar environments (66) suggests that many of its members are adapted to low temperatures and increased levels of osmotica and have evolved molecular-level changes that aid survival at low temperatures.Early studies on cold adaptation in microorganisms revealed physiological strategies to deal with low temperatures, such as changes in membrane saturation, accumulation of compatible solutes, and the presence of cold shock proteins (CSPs) and many other proteins with general functions (62). However, many of the studies were conducted with mesophilic microorganisms, which limits the generality of the conclusions. We addressed the question of cold adaptation by studying microorganisms isolated from subzero environments using physiologic and genomic methods. We chose P. arcticus as our model because of its growth at subzero temperatures and widespread prevalence in permafrost. This paper focuses on the more novel potential adaptations.  相似文献   

13.
Plastid transformation vectors are E. coli plasmids carrying a plastid marker gene for selection, adjacent cloning sites and flanking plastid DNA to target insertions in the plastid genome by homologous recombination. We report here on a family of next generation plastid vectors carrying synthetic DNA vector arms targeting insertions in the rbcL-accD intergenic region of the tobacco (Nicotiana tabacum) plastid genome. The pSS22 plasmid carries only synthetic vector arms from which the undesirable restriction sites have been removed by point mutations. The pSS24 vector carries a c-Myc tagged spectinomycin resistance (aadA) marker gene whereas in vector pSS30 aadA is flanked with loxP sequences for post-transformation marker excision. The synthetic vectors will enable direct manipulation of passenger genes in the transformation vector targeting insertions in the rbcL-accD intergenic region that contains many commonly used restriction sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

15.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M r 250,000±25,000) is composed of subunits identical in molecular mass (M r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase  相似文献   

16.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

17.
Sufficient supply of potassium (K) can alleviate the adverse effects of excess sodium (Na) on plant growth. However, it remains unclear if such a beneficial function is related to regulation of root growth and/or expression of K/Na transporters. Herein we report the responses of a rice cultivar, which was pretreated with normal nutrient solution for 1 month, to three levels of Na (0, 25, and 100 mM) without or with supply of K for 9 days. High Na (100 mM) significantly decreased plant growth, root activity, and total K uptake, and increased biomass ratio of roots to shoots. Short-term removal of K supply (9 days) did not affect root morphology and biomass ratio of roots to shoots, but decreased root activity of seedlings grown in high Na solution. K deficiency increased uptake of Na and transport of K from roots to shoots. Moreover, expression of OsHAK1, a putative K transporter gene, was upregulated by low Na (25 mM) and downregulated by high Na (100 mM) in roots. In leaves, its expression was suppressed by the Na treatments when K supply was maintained. Expression of OsHKT2;1, which encodes a protein that acts mainly as a Na transporter, was downregulated by high Na, but was enhanced by K deficiency both in roots and leaves. Expression of five other putative K/Na transporter or Na+/H+ genes, OsHKT1;1, OsHKT1;2, OsHKT2;3, OsNHX1, and OsSOS1, was not affected by the treatments. The results suggest that OsHAK1 and OsHKT2;1 were involved in the interactive effects of K and Na on their uptake and distribution in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Quercus garryana habitats are increasingly being managed with prescribed fire, but acorn dependent wildlife might be adversely affected if fires damage acorn crops. We examined one way that fire might affect subsequent acorn crops: through direct heating and damage of buds containing the following year’s floral organs. We measured internal bud temperatures during controlled time and temperature treatments, described damage to heated buds at the tissue and cellular levels and quantified spring flowering to assess the consequences of the treatments. We found that internal bud temperature was logarithmically related to exposure time and linearly related to treatment temperature. Tissue damage was more common in bud scales, staminate and bud scale scar primordia than in leaf, pistillate, leaf axillary primordia and apical meristems. Damaged tissues were sequestered by cells with thickened cell walls. A 133°C treatment applied for 60 s produced minimal damage or mortality, but damage increased rapidly in hotter or longer treatments, culminating in 100% mortality at 273°C for 60 s. Our experiments account only for radiative, not convective heating, but suggest that fires might produce sublethal effects that affect flowering and acorn crops. Q. garryana’s large buds possess an internal organ arrangement well suited to minimizing heat damage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors for reductase chains of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the δ-proteobacterium Geobacter sulfurreducens AM-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydrogenation of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens AM-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed.  相似文献   

20.
A plant transformation vector, pCLKSCLA25 (EU327498), was developed to contain eight cloning sites and the inducible self-excision system which provided an effective approach to eliminate the selectable marker gene(s) from transgenic plants. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding the selectable marker neomycin phosphotransferase and cre itself. The excision efficiency was 41% in transgenic tomato regenarants. The stilbene synthase gene (vst1) from Vitis vinifera L. was cloned into pCLKSCLA25. The expression of vst1 gene contributed to the accumulation of trans-reveratrol from 3.4 to 8.7 μg/g fresh wt in different marker-free transgenic tomato lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号