首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A current model for Caenorhabditis elegans vulval cell fate specification is that SynMuv genes act redundantly in the hyp7 hypodermal syncytium to repress the LIN-3/EGF inducer and prevent ectopic vulval induction of vulva precursor cells (VPCs). Here we show that the SynMuv gene hpl-2/HP1 has an additional function in VPCs, where it may act through target genes including LIN-39/Hox.  相似文献   

2.
3.
4.
5.
Meléndez A  Greenwald I 《Genetics》2000,155(3):1127-1137
The SynMuv genes appear to be involved in providing a signal that inhibits vulval precursor cells from adopting vulval fates in Caenorhabditis elegans. One group of SynMuv genes, termed class B, includes genes encoding proteins related to the tumor suppressor Rb and RbAp48, a protein that binds Rb. Here, we provide genetic evidence that lin-13 behaves as a class B SynMuv gene. We show that null alleles of lin-13 are temperature sensitive and maternally rescued, resulting in phenotypes ranging in severity from L2 arrest (when both maternal and zygotic activities are removed at 25 degrees ), to sterile Multivulva (when only zygotic activity is removed at 25 degrees ), to sterile non-Multivulva (when both maternal and zygotic activities are removed at 15 degrees ), to wild-type/class B SynMuv (when only zygotic activity is removed at 15 degrees ). We also show that LIN-13 is a nuclear protein that contains multiple zinc fingers and a motif, LXCXE, that has been implicated in Rb binding. These results together suggest a role for LIN-13 in Rb-mediated repression of vulval fates.  相似文献   

6.
During Caenorhabditis elegans vulval development, the anchor cell (AC) in the somatic gonad secretes an epidermal growth factor (EGF) to activate the EGF receptor (EGFR) signaling pathway in the adjacent vulval precursor cells (VPCs). The inductive AC signal specifies the vulval fates of the three proximal VPCs P5.p, P6.p, and P7.p. The C. elegans Rhomboid homolog ROM-1 increases the range of EGF, allowing the inductive signal to reach the distal VPCs P3.p, P4.p and P8.p, which are further away from the AC. Surprisingly, ROM-1 functions in the signal-receiving VPCs rather than the signal-sending AC. This observation led to the discovery of an AC–independent activity of EGF in the VPCs that promotes vulval cell fate specification and depends on ROM-1. Of the two previously reported EGF splice variants, the longer one requires ROM-1 for its activity, while the shorter form acts independently of ROM-1. We present a model in which ROM-1 relays the inductive AC signal from the proximal to the distal VPCs by allowing the secretion of the LIN-3L splice variant. These results indicate that, in spite of their structural diversity, Rhomboid proteins play a conserved role in activating EGFR signaling in C. elegans, Drosophila, and possibly also in mammals.  相似文献   

7.
We are using Caenorhabditis elegans vulval induction to study intercellular signaling and its regulation. Genes required for vulval induction include the LIN-3 transforming α-like growth factor, the LET-23 epidermal growth factor (EGF)-receptor-like transmembrane tyrosine kinase, the SEM-5 adaptor protein, LET-60 Ras, and the LIN-45 Raf serine/threonine kinase. Inactivation of this pathway results in a failure of vulval differentiation, the “vulvaless” phenotype. Activation of this pathway either by overexpression of LIN-3, a point mutation in the LET-23 extracellular domain, or hyperactivity of LET-60 Ras results in excessive vulval differentiation, the “multivulva” phenotype. In addition to searching for new genes that act positively in this signaling pathway, we have also characterized genes that negatively regulate this inductive signaling pathway. We find that such negative regulators are functionally redundant: mutation of only one of these negative regulators has no effect on vulval differentiation; however, if particular combinations of these genes are inactivated, excessive vulval differentiation occurs. The LIN-15 locus encodes two functionally redundant products, LIN-15A and LIN-15B, that formally act upstream of the LET-23 receptor to prevent its activity in the absence of inductive signal. The LIN-15A and B proteins are novel and unrelated to each other. The unc-101, sli-1, and rok-1 genes encode a distinct set of negative regulators of vulval differentiation. The unc-101 gene encodes an adaptin, proposed to be involved in intracellular protein trafficking. The sli-1 gene encodes a protein with similarity to c-cbl, a mammalian proto-oncogene not previously linked with a tyrosine kinase-Ras-mediated signaling pathway. LIN-3 and LET-23 are required for several aspects of C. elegans development—larval viability, P12 neuroectoblast specification, hermaphrodite vulval induction and fertility, and three inductions during male copulatory spicule development. Fertility and vulval differentiation appear to be mediated by distinct parts of the cytoplasmic tail of LET-23, and by distinct signal transduction pathways. © 1995 wiley-Liss, Inc.  相似文献   

8.
A novel mode of crosstalk between the EGFR-Ras-MAPK and LIN-12/Notch pathways occurs during the patterning of a row of vulval precursor cells (VPCs) in Caenorhabditis elegans: activation of the EGFR-Ras-MAPK pathway in the central VPC promotes endocytosis and degradation of LIN-12 protein. LIN-12 downregulation in the central VPC is a prerequisite for the activity of the lateral signal, which activates LIN-12 in neighboring VPCs. Here we characterize cis-acting targeting sequences in the LIN-12 intracellular domain and find that in addition to a di-leucine motif, serine/threonine residues are important for internalization and lysine residues are important for post-internalization trafficking and degradation. We also identify two trans-acting factors that are required for post-internalization trafficking and degradation: ALX-1, a homolog of yeast Bro1p and mammalian Alix and the WWP-1/Su(dx)/Itch ubiquitin ligase. By examining the effects of mutated forms of LIN-12 and reduced wwp-1 or alx-1 activity on subcellular localization and activity of LIN-12, we provide evidence that the lateral signal-inhibiting activity of LIN-12 resides in the extracellular domain and occurs at the apical surface of the VPCs.  相似文献   

9.
10.
During Caenorhabditis elegans vulval development, the anchor cell (AC) in the somatic gonad secretes an epidermal growth factor (EGF) to activate the EGF receptor (EGFR) signaling pathway in the adjacent vulval precursor cells (VPCs). The inductive AC signal specifies the vulval fates of the three proximal VPCs P5.p, P6.p, and P7.p. The C. elegans Rhomboid homolog ROM-1 increases the range of EGF, allowing the inductive signal to reach the distal VPCs P3.p, P4.p and P8.p, which are further away from the AC. Surprisingly, ROM-1 functions in the signal-receiving VPCs rather than the signal-sending AC. This observation led to the discovery of an AC–independent activity of EGF in the VPCs that promotes vulval cell fate specification and depends on ROM-1. Of the two previously reported EGF splice variants, the longer one requires ROM-1 for its activity, while the shorter form acts independently of ROM-1. We present a model in which ROM-1 relays the inductive AC signal from the proximal to the distal VPCs by allowing the secretion of the LIN-3L splice variant. These results indicate that, in spite of their structural diversity, Rhomboid proteins play a conserved role in activating EGFR signaling in C. elegans, Drosophila, and possibly also in mammals.  相似文献   

11.
12.
13.
Caenorhabditis elegans vulval development provides an important paradigm for studying the process of cell fate determination and pattern formation during animal development. Although many genes controlling vulval cell fate specification have been identified, how they orchestrate themselves to generate a robust and invariant pattern of cell fates is not yet completely understood. Here, we have developed a dynamic computational model incorporating the current mechanistic understanding of gene interactions during this patterning process. A key feature of our model is the inclusion of multiple modes of crosstalk between the epidermal growth factor receptor (EGFR) and LIN-12/Notch signaling pathways, which together determine the fates of the six vulval precursor cells (VPCs). Computational analysis, using the model-checking technique, provides new biological insights into the regulatory network governing VPC fate specification and predicts novel negative feedback loops. In addition, our analysis shows that most mutations affecting vulval development lead to stable fate patterns in spite of variations in synchronicity between VPCs. Computational searches for the basis of this robustness show that a sequential activation of the EGFR-mediated inductive signaling and LIN-12 / Notch-mediated lateral signaling pathways is key to achieve a stable cell fate pattern. We demonstrate experimentally a time-delay between the activation of the inductive and lateral signaling pathways in wild-type animals and the loss of sequential signaling in mutants showing unstable fate patterns; thus, validating two key predictions provided by our modeling work. The insights gained by our modeling study further substantiate the usefulness of executing and analyzing mechanistic models to investigate complex biological behaviors.  相似文献   

14.
Multipotent Caenorhabditis elegans vulval precursor cells (VPCs) choose among three fates (1 degrees, 2 degrees, and 3 degrees ) in response to two intercellular signals: the EGF family growth factor LIN-3 induces 1 degrees fates at high levels and 2 degrees fates at low levels; and a signal via the receptor LIN-12 induces 2 degrees fates. If the level of LIN-3 signal is reduced by a lin-3 hypomorphic mutation, the daughters of the VPC closest to the anchor cell (AC), P6.p, are induced by the AC. By expressing LIN-3 as a function of time in LIN-3-deficient animals, we find that both VPCs and the daughters of VPCs are competent to respond to LIN-3, and VPC daughters lose competence after fusing with the hypodermis. We also demonstrate that the daughters of VPCs specified to be 2 degrees can respond to LIN-3, indicating that 2 degrees VPCs are not irreversibly committed. We propose that maintenance of VPC competence after the first cell cycle and the prioritization of the 1 degrees fate help ensure that P6.p will become 1 degrees. This mechanism of competence regulation might have been maintained from ancestral nematode species that used induction both before and after VPC division and serves to maximize the probability that a functional vulva is formed.  相似文献   

15.
16.
17.
18.
19.
Expression of the Caenorhabditis elegans Hox gene lin-39 begins in the embryo and continues in multiple larval cells, including the P cell lineages that generate ventral cord neurons (VCNs) and vulval precursor cells (VPCs). lin-39 is regulated by several factors and by Wnt and Ras signaling pathways; however, no cis-acting sites mediating lin-39 regulation have been identified. Here, we describe three elements controlling lin-39 expression: a 338-bp upstream fragment that directs embryonic expression in P5-P8 and their descendants in the larva, a 247-bp intronic region sufficient for VCN expression, and a 1.3-kb upstream cis-regulatory module that drives expression in the VPC P6.p in a Ras-dependent manner. Three trans-acting factors regulate expression via the 1.3-kb element. A single binding site for the ETS factor LIN-1 mediates repression in VPCs other than P6.p; however, loss of LIN-1 decreases expression in P6.p. Therefore, LIN-1 acts both negatively and positively on lin-39 in different VPCs. The Forkhead domain protein LIN-31 also acts positively on lin-39 in P6.p via this module. Finally, LIN-39 itself binds to this element, suggesting that LIN-39 autoregulates its expression in P6.p. Therefore, we have begun to unravel the cis-acting sites regulating lin-39 Hox gene expression and have shown that lin-39 is a direct target of the Ras pathway acting via LIN-1 and LIN-31.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号