共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently identified the first mammalian tRNA-specific adenosine deaminase human ADAT1, a member of the ADAR family of RNA editing enzymes. This protein is responsible for the first step of the unique A(37) to m(1)I(37) modification in eukaryotic tRNA(Ala). Here, we present the genomic structure of murine ADAT1 and the functional expression of mADAT1 cDNA. In mouse, as well as in human, ADAT1 is expressed from a single copy gene. The coding region of the mADAT1 gene is spread over nine exons, covering approximately 30kb of genomic DNA and encodes a protein of 499 amino acids. Overall, mADAT1 shares 81% nucleotide homology and 87.5% protein homology with the human ortholog. The recombinant mouse protein is active specifically and with a high efficiency on human tRNA(Ala) in vitro. Its genomic organization is compared to the structures of the sequence-related, pre-mRNA specific adenosine deaminases ADAR1 and ADAR2. 相似文献
2.
3.
We report the characterization of tadA, the first prokaryotic RNA editing enzyme to be identified. Escherichia coli tadA displays sequence similarity to the yeast tRNA deaminase subunit Tad2p. Recombinant tadA protein forms homodimers and is sufficient for site-specific inosine formation at the wobble position (position 34) of tRNA(Arg2), the only tRNA having this modification in prokaryotes. With the exception of yeast tRNA(Arg), no other eukaryotic tRNA substrates were found to be modified by tadA. How ever, an artificial yeast tRNA(Asp), which carries the anticodon loop of yeast tRNA(Arg), is bound and modified by tadA. Moreover, a tRNA(Arg2) minisubstrate containing the anticodon stem and loop is sufficient for specific deamination by tadA. We show that nucleotides at positions 33-36 are sufficient for inosine formation in mutant Arg2 minisubstrates. The anticodon is thus a major determinant for tadA substrate specificity. Finally, we show that tadA is an essential gene in E.coli, underscoring the critical function of inosine at the wobble position in prokaryotes. 相似文献
4.
5.
Aminoacyl-tRNA synthetases establish the rules of the genetic code by joining amino acids to tRNAs that bear the anticodon triplets corresponding to the attached amino acids. The enzymes are thought to be among the earliest proteins to appear, in the transition from a putative RNA world to the theater of proteins. Over their long evolution, the enzymes have acquired additional functions that typically require specialized insertions or domain fusions. Recently, fragments of the closely related human tyrosyl- and tryptophanyl-tRNA synthetases were discovered to be active in angiogenesis signaling pathways. One synthetase fragment has proangiogenic activity, while the other is antiangiogenic. Activity was demonstrated in cell-based assays in vitro and in vivo in the chick embryo, and in the neonatal and adult mouse. The full-length, native enzymes are inactive in these same assays. Activation of angiogenesis activity requires fragment production from the native enzymes by protease cleavage or by translation of alternatively spliced pre-mRNA. Thus, these tRNA synthetases link translation to a major cell-signaling pathway in mammalian cells. The results with animals suggest that therapeutic applications are possible with these tRNA synthetases. 相似文献
6.
Human tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) are closely related, dual function enzymes that act in protein biosynthesis and angiogenesis. The recent crystallographic structures of these two enzymes show that they adopt remarkably similar three-dimensional (3D) architectures, being more like each other than like their respective prokaryotic orthologs. In particular, adaptations to the anticodon recognition domain of TyrRS cause distinct appended domains in TyrRS and TrpRS to occupy the same 3D space and thus to mask a common surface on each synthetase. Thought to be important for cell-signaling activity, this surface is made accessible by proteolytic cleavage, thereby activating the cell-signaling function of these enzymes. 相似文献
7.
Recognition of tRNA by aminoacyl tRNA synthetases 总被引:19,自引:0,他引:19
8.
A challenge for mammalian genetics is the recognition of critical regulatory regions in primary gene sequence. One approach
to this problem is to compare sequences from genes exhibiting highly conserved expression patterns in disparate organisms.
Previous transgenic and transfection analyses defined conserved regulatory domains in the mouse and human adenosine deaminase
(ADA) genes. We have thus attempted to identify regions with comparable similarity levels potentially indicative of critical
ADA regulatory regions. On the basis of aligned regions of the mouse and human ADA gene, using a 24-bp window, we find that
similarity overall (67.7%) and throughout the noncoding sequences (67.1%) is markedly lower than that of the coding regions
(81%). This low overall similarity facilitated recognition of more highly conserved regions. In addition to the highly conserved
exons, ten noncoding regions >100 bp in length displayed >70% sequence similarity. Most of these contained numerous 24-bp
windows with much higher levels of similarity. A number of these regions, including the promoter and the thymic enhancer,
were more similar than several exons. A third block, located near the thymic enhancer but just outside of a minimally defined
locus control region, exhibited stronger similarity than the promoter or thymic enhancer. In contrast, only fragmentary similarity
was exhibited in a region that harbors a strong duodenal enhancer in the human gene. These studies show that comparative sequence
analysis can be a powerful tool for identifying conserved regulatory domains, but that some conserved sequences may not be
detected by certain functional analyses as transgenic mice.
Received: 27 March 1998 / Accepted: 22 September 1998 相似文献
9.
Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. 总被引:8,自引:0,他引:8 下载免费PDF全文
We have identified an RNA-specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor-mRNAs and on long double-stranded RNA. These findings suggest an evolutionary link between pre-mRNA editing and tRNA modification. 相似文献
10.
Kuratani M Ishii R Bessho Y Fukunaga R Sengoku T Shirouzu M Sekine S Yokoyama S 《The Journal of biological chemistry》2005,280(16):16002-16008
The bacterial tRNA adenosine deaminase (TadA) generates inosine by deaminating the adenosine residue at the wobble position of tRNA(Arg-2). This modification is essential for the decoding system. In this study, we determined the crystal structure of Aquifex aeolicus TadA at a 1.8-A resolution. This is the first structure of a deaminase acting on tRNA. A. aeolicus TadA has an alpha/beta/alpha three-layered fold and forms a homodimer. The A. aeolicus TadA dimeric structure is completely different from the tetrameric structure of yeast CDD1, which deaminates mRNA and cytidine, but is similar to the dimeric structure of yeast cytosine deaminase. However, in the A. aeolicus TadA structure, the shapes of the C-terminal helix and the regions between the beta4 and beta5 strands are quite distinct from those of yeast cytosine deaminase and a large cavity is produced. This cavity contains many conserved amino acid residues that are likely to be involved in either catalysis or tRNA binding. We made a docking model of TadA with the tRNA anticodon stem loop. 相似文献
11.
12.
Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 A of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNA(Arg2) bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination. 相似文献
13.
Schimmel P 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1580):2965-2971
Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life. 相似文献
14.
W P Schrader C A West N L Strominger 《The journal of histochemistry and cytochemistry》1987,35(4):443-451
Adenosine deaminase and adenosine deaminase complexing protein have been localized in rabbit brain. Brains fixed in paraformaldehyde or in Clarke's solution were blocked coronally. Blocks from brains fixed in paraformaldehyde were either frozen in liquid nitrogen or embedded in paraffin. Tissue fixed in Clarke's solution was embedded in paraffin. Sections from each block were stained by the peroxidase-antiperoxidase method for adenosine deaminase or complexing protein using affinity-purified goat antibodies. Adenosine deaminase and complexing protein did not co-localize. Adenosine deaminase was detected in oligodendroglia and in endothelial cells lining blood vessels, whereas complexing protein was concentrated in neurons. The subcellular location and appearance of the peroxidase reaction product associated with individual cells was also quite distinctive. The cell bodies of adenosine deaminase-positive oligodendroglia were filled with intense deposits of peroxidase reaction product. In contrast to oligodendroglia, the reaction product associated with most neurons stained for complexing protein was concentrated in granular-appearing cytoplasmic deposits. In some instances, these deposits were clustered about the nuclear membrane. Staining of neurons in the granular layer of cerebellum was an exception. Granule cells were lightly outlined by peroxidase reaction product. Cerebellar islands, also referred to as glomeruli, were stained an intense uniform brown. These results raise the possibility that oligodendroglia and blood vessel endothelia, through the action of adenosine deaminase, might play a role in controlling the concentration of extracellular adenosine in brain. They do not, however, support the suggestion that complexing protein aids in adenosine metabolism by positioning adenosine deaminase on the plasma membrane. 相似文献
15.
16.
17.
18.
19.
Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs, thereby ensuring the faithful translation of genetic code. In addition to their enzymatic function, these enzymes have been discovered to regulate various cellular functions such as tRNA export, ribosomal RNA synthesis, apoptosis, inflammation and angiogenesis in mammalian. The insights into the noncanonical activities of these enzymes have been obtained from their unique cellular localization, interacting partners, isoform generation and expression control. Mammalian ARSs also form a macromolecular protein complex with a few auxiliary factors. Although the physiological significance of this complex is poorly understood, it also supports the potential of mammalian ARSs as sophisticated multifunctional proteins for regulating various cellular procedures. In this review, the novel regulatory activities of mammalian ARSs will be discussed in different biological processes. 相似文献