首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor protein complex. DhcA, cytoplasmic dynein heavy chain in Aspergillus oryzae, contained four P-loops involved in ATP binding which were conserved as in cytoplasmic dynein heavy chains of other organisms. The amino acid sequence of A. oryzae DhcA was similar to cytoplasmic dynein heavy chains from other organisms except for the N-terminus of Saccharomyces cerevisiae Dyn1. Disruption of dhcA gene in the region encoding four P-loop motifs resulted in a defective growth and perturbed distribution of nuclei and vacuoles. The dhcA disruptant exhibited an abnormal morphology of conidial heads and conidia with an increased nuclear number. The present study implicates a novel role of cytoplasmic dynein in maintenance of the nuclear number in conidia through an organized conidiation.  相似文献   

2.
The asexual ascomycete Aspergillus oryzae has an steA homolog in its genome. The steA homolog of A. oryzae was transcribed in the wild-type strain but steA disruption did not affect the phenotype of the disruptant strain. On the other hand, the steA-overexpressing strain showed the restriction of vegetative hyphal growth and conidiation, and the formation of balloon-shaped structures. The restriction of vegetative hyphal growth and conidiation were partially rescued by high osmolarity. In addition, the hyphal growth of the steA-overexpressing strain was inhibited by Calcofluor white, and the strain was found to be sensitive to cell-wall-degrading reagents. Increase of secretory cell-wall-degrading enzymes of the steA-overexpressing strain was detected. These results indicate that SteA regulates cell-wall-degrading enzymes and that the phenotypes of A. oryzae steA-overexpressing strain may be due to cell wall abnormalities. steA may participate in cell wall metabolism.  相似文献   

3.
Screening of a cDNA library constructed under alkaline pH mediated growth of Aspergillus oryzae implicated a vacuolar H+-ATPase gene (vmaA) as a putative candidate involved in alkaline pH adaptation. A. oryzae vmaA genomic DNA extended to 2072 bp including three introns and encoded a protein of 605 amino acids. VmaAp was homologous to Vma-1p from Neurospora crassa (71%), Vma1p from Saccharomyces cerevisiae (69%) and ATP6A2 from human (49%). The vmaA cDNA complemented S. cerevisiae V-ATPase disrupted strain (Deltavma1) was viable at alkaline pH 8.0 and in the presence of CaCl(2) (100 mM). Northern analysis revealed an enhanced expression of vmaA during growth of A. oryzae in alkaline medium (pH 10.0). The A. oryzae vmaA disruptant exhibited abnormally shrunken vacuoles and hyphal walls at pH 8.5 and a growth defect at pH 10.0, implicating an alkaline pH stress responsive role for vmaA in A. oryzae.  相似文献   

4.
We isolated and characterized BMK1, a gene encoding a mitogen-activated protein kinase (MAPK), from the rice leaf spot pathogen Bipolaris oryzae. The deduced amino acid sequence showed significant homology with Fus3/Kss1 MAPK homologues from other phytopathogenic fungi. The BMK1 disruptants showed impaired hyphal growth, no conidial production, and loss of virulence against rice leaves, indicating that the BMK1 is essential for conidiation and pathogenicity in B. oryzae.  相似文献   

5.
PhoX homology (PX) domain-containing proteins play critical roles in vesicular trafficking, protein sorting, and lipid modification in eukaryotic cells. Several proteins with PX domains contain an associated domain termed PXA (PX-associated). Although PXA domain-containing proteins are required for some important cellular processes, the function of the PXA domain is unknown. We identified three PXA domain-containing proteins in Schizosaccharomyces pombe. S. pombe Pxa1p (SPAC5D6.07c) contained only the PXA domain, not the PX domain. To elucidate the role of the PXA domain in eukaryotic cells, we constructed and characterized a disruption mutant, pxa1. The pxa1 disruptant contained enlarged vacuoles and exhibited mislocalization of vacuolar carboxypeptidase Y (CPY). The conversion rate from pro- to mature-CPY was greatly impaired in pxa1 cells, and fluorescence microscopy indicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. The mutants were also deficient in vacuolar sorting of a multivesicular body (MVB) marker, a ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein. Taken together, these results indicate that Pxa1 protein is required for normal vacuole function and morphology in S. pombe.  相似文献   

6.
7.
Shoji JY  Arioka M  Kitamoto K 《Autophagy》2006,2(3):226-227
Morphological analyses of vacuoles in filamentous fungi in the past decade have led to the remarkable finding that they are highly pleiomorphic organelles. Among them, tubular vacuoles have been implicated in nutrient transport between hyphal tips and the host plant surface in mycorrhizal fungi. However, a series of works suggested the presence of tubular vacuoles in other fungi that are not mycorrhizal, including Aspergillus oryzae, hinting at more general roles of the tubular vacuoles. Recently, we made two key observations by using the fusion protein of enhanced green fluorescent protein (EGFP) with a putative vacuolar t-SNARE in A. oryzae; tubular vacuoles formed more extensively in hyphae that were not in contact with nutrients, and vacuoles that were interconnected by tubules in the mature mycelial region displayed traces of microautophagy-mediated degradation of cytoplasm. The aim of this addendum is to discuss the possible involvement of vacuoles in degrading, transporting, and recycling nutrients from the mature mycelial region to hyphal tips, to support the continuous tip growth.  相似文献   

8.
The vacuolar protein sorting (vps) system in the filamentous fungus Aspergillus oryzae, which has unique cell polarity and the ability to secrete large amounts of proteins, was evaluated by using mutants that missort vacuolar proteins into the medium. Vacuolar carboxypeptidase Y (CPY) fused with enhanced green fluorescent protein (EGFP) was used as a vacuolar marker. Twenty dfc (dim EGFP fluorescence in conidia) mutants with reduced intracellular EGFP fluorescence in conidia were isolated by fluorescence-activated cell sorting from approximately 20,000 UV-treated conidia. Similarly, 22 hfm (hyper-EGFP fluorescence released into the medium) mutants with increased extracellular EGFP fluorescence were isolated by using a fluorescence microplate reader from approximately 20,000 UV-treated conidia. The dfc and hfm mutant phenotypes were pH dependent, and missorting of CPY-EGFP could vary by 10- to 40-fold depending on the ambient pH. At pH 5.5, the dfc-14 and hfm-4 mutants had an abnormal hyphal morphology that is consistent with fragmentation of vacuoles and defects in cell polarity. In contrast, the hyphal and vacuolar morphology of the dfc-14 and hfm-4 mutants was normal at pH 8.0, although CPY-EGFP accumulated in perivacuolar dot-like structures similar to the class E compartments in Saccharomyces cerevisiae vps mutants. In hfm-21, CPY-EGFP localized at the Spitzenk?rper when the mutant was grown at pH 8.0 but not in vacuoles, suggesting that hfm-21 may transport CPY-EGFP via a novel pathway that involves the Spitzenk?rper. Correlations between vacuolar protein sorting, pH response, and cell polarity are reported for the first time for filamentous fungi.  相似文献   

9.
Growth and organelle morphology in the wood rotting basidiomycete fungus Phanerochaete velutina were examined in Petri dishes, on agar-coated slides, and in submerged cultures, using DIC, fluorescence and four-dimensional (4-D; x,y,z,t) confocal microscopy, with several fluorescent probes. Phanerochaete is ideal for this work because of its fast growth, robustness, and use in a wide range of other studies. The probe carboxy-DFFDA, widely used for labelling vacuoles, has no effect either on hyphal tip extension or colony growth at the concentrations usually applied in labelling experiments. Carboxy-DFFDA labels the vacuoles and these form a tubular reticulum in hyphal tip cells. The probe also labels extremely small vesicles (punctate fluorescence) in the apex of tip cells, the Spitzenkörper, and short tubules that undergo sequences of characteristic movements and transformations to produce various morphologies, including ring-like structures. Their location and behaviour suggest that they are a distinct group of structures, possibly a subset of vacuoles, but as yet to be fully identified. Regular incursions of tubules extending from these structures and from the vacuolar reticulum into the apical dome indicate the potential for delivery of material to the apex via tubules as well as vesicles. Such structures are potential candidates for delivering chitin synthases to the apex. Spitzenkörper behaviour has been followed as hyphal tips with linear growth encounter obstacle hyphae and, as the hydrolysis product of carboxy-DFFDA only accumulates in membrane-enclosed compartments, it can be inferred that the labelled structures represent the Spitzenkörper vesicle cloud. Mitochondria also form a reticular continuum of branched tubules in growing hyphal tips, and dual localisation with DiOC6(3) and CMAC allows this to be distinguished from the vacuolar reticulum. Like vacuolar tubules, mitochondrial tubules also span the septa, indicating that they may also be a conduit for intercellular transport.  相似文献   

10.
PhoX homology (PX) domain-containing proteins play critical roles in vesicular trafficking, protein sorting, and lipid modification in eukaryotic cells. Several proteins with PX domains contain an associated domain termed PXA (PX-associated). Although PXA domain-containing proteins are required for some important cellular processes, the function of the PXA domain is unknown. We identified three PXA domain-containing proteins in Schizosaccharomyces pombe. S. pombe Pxa1p (SPAC5D6.07c) contained only the PXA domain, not the PX domain. To elucidate the role of the PXA domain in eukaryotic cells, we constructed and characterized a disruption mutant, pxa1. The pxa1 disruptant contained enlarged vacuoles and exhibited mislocalization of vacuolar carboxypeptidase Y (CPY). The conversion rate from pro- to mature-CPY was greatly impaired in pxa1 cells, and fluorescence microscopy indicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. The mutants were also deficient in vacuolar sorting of a multivesicular body (MVB) marker, a ubiquitin–GFP–carboxypeptidase S (Ub–GFP–CPS) fusion protein. Taken together, these results indicate that Pxa1 protein is required for normal vacuole function and morphology in S. pombe.  相似文献   

11.
《Autophagy》2013,9(3):226-227
Morphological analyses of vacuoles in filamentous fungi in the past decade have led to the remarkable finding that they are highly pleiomorphic organelles. Among them, tubular vacuoles have been implicated in nutrient transport between hyphal tips and the host plant surface in mycorrhizal fungi. However, a series of works suggested the presence of tubular vacuoles in other fungi that are not mycorrhizal, including Aspergillus oryzae, hinting at more general roles of the tubular vacuoles. Recently, we made two key observations by using the fusion protein of enhanced green fluorescent protein (EGFP) with a putative vacuolar t-SNARE in A. oryzae; tubular vacuoles formed more extensively in hyphae that were not in contact with nutrients, and vacuoles that were interconnected by tubules in the mature mycelial region displayed traces of microautophagy-mediated degradation of cytoplasm. The aim of this addendum is to discuss the possible involvement of vacuoles in degrading, transporting, and recycling nutrients from the mature mycelial region to hyphal tips, to support the continuous tip growth.

Addendum to:

Vacuolar Membrane Dynamics in the Filamentous Fungus Aspergillus oryzae

J.Y. Shoji, M. Arioka and K. Kitamoto

Eukaryot Cell 2006; 5: 411-21  相似文献   

12.
13.
14.
《Autophagy》2013,9(11):1818-1827
Macroautophagy-mediated glycogen catabolism is required for asexual differentiation in the blast fungus, Magnaporthe oryzae. However, the function(s) of selective subtypes of autophagy has not been studied therein. Here, we report that mitophagy, selective autophagic delivery of mitochondria to the vacuoles for degradation, occurs during early stages of Magnaporthe conidiation. Specifically, mitophagy was evident in the foot cells while being undetectable in aerial hyphae and/or conidiophores. We show that loss of MoAtg24, a sorting nexin related to yeast Snx4, disrupts mitophagy and consequently leads to highly reduced conidiation, suggesting that mitophagy in the foot cells plays an important role during asexual development in Magnaporthe. Ectopic expression of yeast ScATG32 partially suppressed the conidiation initiation defects associated with MoATG24 deletion. MoAtg24 was neither required for pexophagy nor for macroautophagy, or for MoAtg8 localization per se, but directly associated with and likely recruited mitochondria to the autophagic structures during mitophagy. Lastly, MoAtg24 was also required for oxidative stress response in Magnaporthe.  相似文献   

15.
Dou X  Wang Q  Qi Z  Song W  Wang W  Guo M  Zhang H  Zhang Z  Wang P  Zheng X 《PloS one》2011,6(1):e16439
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity.  相似文献   

16.
Cultures ofAchlyasp.,Phytophthora cinnamomi, Saprolegnia diclina, S. ferax,andS. parasitica,treated with 6-carboxyfluorescein diacetate solution, accumulate 6-carboxyfluorescein in a reticulate system of fine tubules. The network shows longitudinal polarity within the hyphae, tubules being finest toward the hyphal tips. In more mature subapical regions the network is connected with large vacuoles that also accumulate 6-carboxyfluorescein. A morphologically similar system has also been identified in freeze-substituted hyphae ofS. ferax.The network is considered to be vacuolar, but differs from the tubular vacuole system of true fungi in that tubules are less motile, more frequently branched, and do not alternate with clusters of spherical vacuoles. The appearance of the network resembles patterns of calcium-sensitive dye staining and it is suggested that the vacuolar reticulum in the tip region of oomycete hyphae may act as a Ca2+sink. The tubular reticulum in oomycetes is very fragile and can be shown with 6-carboxyfluorescein in only those hyphal tips with a motility and organelle distribution characteristic of growing hyphae with normal morphology. Diverse abnormal hyphae show a range of other fluorochrome localizations. These include large irregular compartments filled with fluorochrome, and fluorescent cytoplasm with organelles and vacuoles standing out in negative contrast. These localizations in abnormal hyphae are correlated with other structural changes indicative of damage. Special care is required in experiments with oomycetes to avoid such artefacts of localization.  相似文献   

17.
Although the catalase gene (CAT1) disruptant of the human pathogenic yeast Candida albicans was viable under ordinary growth conditions, we previously found that it could not grow on YPD (yeast extract/peptone/dextrose) containing SDS or at higher growth temperatures. To investigate the pleiotrophic nature of the disruptant, we examined the effect of the catalase inhibitor 3-AT on the growth of wild-type strains. Surprisingly, the addition of 3-AT and SDS caused the wild-type cells to be non-viable on YPD plates. We found an additional phenotype of the catalase gene disruptant: it did not produce normal hyphae on Spider medium. Hyphal growth was observed in a CAP1 (Candida AP-1-like protein gene) disruptant, a HOG1 (high-osmolarity glycerol signaling pathway gene) disruptant, and the double CAP1/HOG1 disruptant, suggesting that the defect in hyphal formation by the catalase disruptant was independent of these genes. Addition of 3-AT and SDS to hyphae-inducing media suppressed growth of normal hyphae in the wild-type strain. The potential necessity for catalase action upon exposure to hyphae-inducing conditions was confirmed by the immediate elevation of the catalase gene message. In spite of the requirement for catalase during hyphal growth, the catalase gene disruptant was capable of forming germ tubes in medium containing serum.  相似文献   

18.
Yeast vacuole protein targeting (vpt) mutants exhibit defects in the sorting and processing of multiple vacuolar hydrolases. To evaluate the impact these vpt mutations have on the biogenesis and functioning of the lysosome-like vacuole, we have used light and electron microscopic techniques to analyze the vacuolar morphology in the mutants. These observations have permitted us to assign the vpt mutants to three distinct classes. The class A vpt mutants (26 complementation groups) contain 1-3 large vacuoles that are morphologically indistinguishable from those in the parental strain, suggesting that only a subset of the proteins destined for delivery to this compartment is mislocalized. One class A mutant (vpt13) is very sensitive to low pH and exhibits a defect in vacuole acidification. Consistent with a potential role for vacuolar pH in protein sorting, we found that bafilomycin A1, a specific inhibitor of the vacuolar ATPase, as well as the weak base ammonium acetate and the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, collapse the pH gradient across the vacuolar membrane and cause the missorting and secretion of two vacuolar hydrolases in wild-type cells. Mutants in the three class B vpt complementation groups exhibit a fragmented vacuole morphology. In these mutants, no large normal vacuoles are observed. Instead, many (20-40) smaller vacuole-like organelles accumulate. The class C vpt mutants, which constitute four complementation groups, exhibit extreme defects in vacuole biogenesis. The mutants lack any organelle resembling a normal vacuole but accumulate other organelles including vesicles, multilamellar membrane structures, and Golgi-related structures. Heterozygous class C zygotes reassemble normal vacuoles rapidly, indicating that some of the accumulated aberrant structures may be intermediates in vacuole formation. These class C mutants also exhibit sensitivity to osmotic stress, suggesting an osmoregulatory role for the vacuole. The vpt mutants should provide insights into the normal physiological role of the vacuole, as well as allowing identification of components required for vacuole protein sorting and/or vacuole assembly.  相似文献   

19.
Vacuolar carboxypeptidase Y (CPY) from Aspergillus nidulans was used to construct a CPY-EGFP fusion protein and expressed in A. oryzae to study vacuolar morphology and functions in A. oryzae. While the fluorescence of EGFP was barely detectable in A. oryzae expressing CPY-EGFP grown under normal conditions at pH 5-6, the increase in pH of the growth medium towards alkalinity restored the fluorescence. In accordance with such an observation, the fluorescence of CPY-EGFP fusion protein in cell extract decreased in acidic pH condition, concomitant with lowered content of EGFP detected in A. oryzae grown under acidic pH conditions. The pH sensitivity of EGFP fluorescence and enhanced degradation of proteins in vacuoles under acidic pH conditions are thus proposed to result in the reduction of fluorescence in A. oryzae. Further, visualization of vacuoles revealed the presence of peculiar ring- or tube-like structures as distinct from normal spherical-shaped vacuoles.  相似文献   

20.
A fragment from the open reading frame of the cloned chsA gene from Aspergillus nidulans was deleted and replaced with the argB gene. The resulting construct was used to replace the wild-type chsA gene in an argB deletion strain. The growth and morphology of the vegetative hyphae from the resulting chsA disruptant strain were indistinguishable from those of a wild-type strain but the chitin content of the hyphae from the disruptant was reduced to approximately 90% of that of wild-type. The disruptant showed reduced ability to produce the asexual spores (conidia) that are formed by differentiated aerial hyphae called conidiophores. The ability to form undifferentiated aerial hyphae was not impaired in the disruptant. The conidiophores and conidia produced by the disruptant were indistinguishable from those of wild-type. Conidium formation by the disruptant grown on a variety of media was reduced to about 30% of the wild-type. A chsE null strain did not show a defect in conidiation but a strain in which both chsA and chsE were inactivated produced about 3% of the conidia of wild-type. That finding supports the hypothesis that chsA and chsE encode a partially redundant function necessary for conidiophore development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号