首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human, dog, and rabbit fibrinogen served as substrates for calcium-activated, phospholipid-dependent protein kinase, cAMP-dependent protein kinase, casein kinase TS, and casein kinase S. The chains of phosphorylated fibrinogen were separated by polyacrylamide gel electrophoresis and the phosphorylation patterns, obtained on autoradiography of the gels, were found to be characteristic for each of the four protein kinases. Dog, and even more so rabbit, fibrinogen was phosphorylated more rapidly than human fibrinogen by calcium-activated, phospholipid-dependent protein kinase and by casein kinase TS. Dog fibrinogen was not a good substrate for cAMP-dependent protein kinase. The rate of phosphorylation with casein kinase S did not differ very much between the fibrinogens of the three species. In most cases the A alpha-chain was most rapidly phosphorylated. However, in dog fibrinogen incubated with casein kinase TS the B beta-chain was most rapidly phosphorylated. A substantial part of this phosphate seemed to be incorporated as phosphorylthreonine into fibrinopeptide B. In human fibrinogen incubated with the casein kinase TS preparation the gamma-chain as well as the A alpha-chain appeared to be phosphorylated.  相似文献   

2.
We have found that the form of glycoprotein (GP) IIb-IIIa (integrin alpha IIb beta 3) expressed on nonstimulated platelets is a functional receptor that mediates selective and irreversible adhesion to immobilized fibrinogen. This occurs even in the presence of the elevated intracellular cAMP levels induced by prostaglandin E1 or after inhibition of protein kinase C activity by sphingosine. In the absence of inhibitors, platelets adhering to fibrinogen through GP IIb-IIIa become fully activated and aggregate with one another. Immobilized von Willebrand factor (vWF), in contrast, is recognized by nonstimulated platelets through another receptor, GP Ib. This interaction leads to a change in the ligand recognition specificity of GP IIb-IIIa that can then bind to immobilized vWF and mediate irreversible platelet adhesion and aggregation; this process, however, is inhibited by elevated intracellular cAMP levels or blockade of protein kinase C activity. Therefore, GP Ib and GP IIb-IIIa induce platelet activation through the selective recognition of immobilized vWF and fibrinogen, respectively, in the absence of exogenous agonists. Moreover, "nonactivated" and "activated" GP IIb-IIIa exhibits distinctly different reactivity toward surface-bound vWF, and the functional switch can be induced by the binding of vWF to GP Ib. These findings demonstrate the modulation of platelet function by two different adhesion receptors, GP Ib and GP IIb-IIIa, as well as the distinct dual role of the latter as the necessary common mediator of irreversible adhesion and aggregation on both fibrinogen and vWF.  相似文献   

3.
Phosphorylation of fibrinogen by casein kinase 1   总被引:3,自引:0,他引:3  
Casein kinase 1 phosphorylated human fibrinogen, in a reaction that did not use GTP as phosphoryl donor and was neither stimulated by cyclic AMP or Ca2+, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. Maximal incorporation averaged 4 mol of phosphate per mol of fibrinogen, most of it in the largest CNBr-fragment of the alpha-chain. Phosphoamino acid analysis revealed that phosphorylation occurred only at seryl residues. The phosphorylation of fibrinogen by casein kinase 1 was reverted by alkaline phosphatase.  相似文献   

4.
The binding sites in fibrinogen for Factor XIII were localized using an immunoblotting technique. Platelet Factor XIII bound to fibrinogen and to plasmin degradation products of fibrin(ogen) including Fragments: X, D1-D3, and D-dimer, but did not bind to Fragment E. Binding of Platelet Factor XIII was independent of calcium ions but could be inhibited by the presence of 0.5 M NaCl. Binding could also be inhibited by preincubating Factor XIII with a 100-fold molar excess of fibrinogen but not by 100-fold molar excess of Fragment E. Binding of Factor XIII to fibrinogen was specific, since several other proteins tested (ovalbumin, bovine serum albumin, alpha 2-macroglobulin, beta-galactosidase, fructose kinase, lactic dehydrogenase, triose phosphate isomerase, fumarase and pyruvate kinase) did not bind Factor XIII. Furthermore, binding was not observed either when Factor XIII was left out or when antiFactor XIII antiserum was substituted with nonimmune serum. When fibrinogen was reduced prior to electrophoresis, Factor XIII bound to the A alpha and B beta chains of fibrinogen and des A,B fibrinogen, the B beta-chain of Fragment X, but not the gamma-chains. Localization of the Factor XIII binding sites to the carboxy terminal segments of the A alpha and B beta chains in the Fragment D-domain of fibrinogen could have important physiological consequences.  相似文献   

5.
Casein kinase 2 from rat liver cytosol phosphorylated human fibrinogen in a reaction that was not stimulated by Ca2+ or cyclic AMP, but was markedly inhibited by heparin, and proceeded at a similar rate when either ATP or GTP was used as phosphate donor. Analysis of casein kinase 2 by glycerol-density-gradient centrifugation showed that the activities towards fibrinogen, casein, phosvitin, high-mobility-group protein 14 and glycogen synthase coincided. Maximal incorporation into fibrinogen by casein kinase 2 averaged 1 mol of phosphate/mol of protein substrate, most of it in the alpha-chain, although some phosphorylation of the beta-chain was also detected. Analysis of phosphorylated alpha-chain revealed that most of the phosphate was incorporated on serine. Phosphorylation of human fibrinogen was also performed by casein kinase 2 from human polymorphonuclear leucocytes, lymphocytes and platelets.  相似文献   

6.
Ajoene, (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide, is a potent antiplatelet compound isolated from alcoholic extracts of garlic. In vitro, ajoene reversibly inhibits platelet aggregation as well as the release reaction induced by all known agonists. In this paper we show that ajoene has a unique locus of action, that is not shared by any other known antiplatelet compound. For example, ajoene inhibits agonist-induced exposure of fibrinogen receptors, as well as intracellular responses such as activation of protein kinase C and the increase in cytoplasmic free calcium induced by receptor-dependent agonists (collagen, ADP, PAF, low-dose thrombin). On the other hand, with agonists that can by-pass (at least partially) the receptor-transductor-effector sequence, such as high-dose thrombin, PMA, NaF, only the exposure of fibrinogen receptors is blocked by ajoene. Binding of fibrinogen to chymotrypsin-treated platelets is only slightly inhibited by ajoene. The results reported here also show that: (a) ajoene does not act as a calcium chelator, does not impair the initial agonist-receptor interaction and does not influence the basal levels of intracellular inhibitors of platelet activation such as cyclic GMP; (b) the locus of action of ajoene is a yet unknown molecular step that links, in the case of physiological agonists, specific agonist-receptor complexes to the sequence of the signal transduction system on the plasma membrane of platelets. In the case of non-physiological, receptor-independent agonists (PMA, NaF), we can only speculate on the hypothesis that they somehow mimic the effect of the agonist-receptor complexes on the signal transduction system; and (c) the exposure of fibrinogen receptors is not a direct consequence of other intracellular processes. These observations clearly show, for the first time, that the exposure of fibrinogen receptors is a membrane event proximally and obligatorily coupled to the occupancy of other membrane receptors by their agonists without any intervention by the cytoplasmic biochemical processes. Additional results support the involvement of G-proteins in these early events of platelet activation. Furthermore, a role of the beta tau subunits of G-proteins in the exposure of fibrinogen receptors is proposed.  相似文献   

7.
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) is a potent activator of neutrophil degranulation. The intracellular signaling mechanisms involved in the potentiating effect of fibrinogen on fMLP-induced primary granule release from human neutrophils were investigated. Fibrinogen caused a significant leftward shift of the concentration-response curve of fMLP-induced elastase release. An antibody against Mac-1 (CD11b/CD18) prevented the potentiating effect of fibrinogen, suggesting that soluble fibrinogen potentiates fMLP-induced degranulating effect by a mechanism mediated by the integrin Mac-1. Fibrinogen enhanced fMLP-induced tyrosine phosphorylation in human neutrophils and markedly enhanced the phosphorylation of mitogen-activated protein kinases (MAPK) caused by fMLP. However, U0126, an inhibitor of p44/42 MAPK activation, or SB-203580, an inhibitor of p38 MAPK, did not alter the effect of fibrinogen on fMLP-induced elastase release. Wortmannin, a phosphatidylinositol 3-kinase (PI3K) kinase inhibitor, and genistein, a nonspecific tyrosine kinase inhibitor, strongly inhibited fMLP-induced elastase release both in the presence and in the absence of fibrinogen. An Akt/PKB inhibitor failed to alter the potentiating effect of fibrinogen, suggesting that the effect of fibrinogen is mediated by Akt-independent pathways. Go6976, an inhibitor of classical PKC isoforms, caused a significant inhibition of fMLP-induced elastase release in the presence or absence of fibrinogen, while nonselective inhibitors of PKC, Ro 31-8220, GF-109203X, and staurosporine, caused potentiation of fMLP-induced elastase release. We conclude that fibrinogen potentiation of primary granule release induced by fMLP is mediated by the integrin CD11b/CD18 through pathways dependent on PI3K and tyrosine kinases, but other regulatory mechanisms may be also involved.  相似文献   

8.
Human fibrinogen was phosphorylated by casein kinase TS. The [32P]phosphate incorporated varied between 0.5 and 1 mol of phosphate per mole of fibrinogen. The phosphate was localized to Ser523 and Ser590 and serine and threonine residues between amino acids 259 and 268 in the A alpha-chain. In addition, Thr416 and Ser420 were phosphorylated in the gamma'-chain, which is a variant of the gamma-chain, constituting 7-10% of the gamma-chain population. The functional significance of casein kinase TS-induced phosphorylation of fibrinogen remains unknown; however, a slight but consistent increase of the turbidity in a gelation assay was observed for phosphorylated compared to unphosphorylated fibrinogen.  相似文献   

9.
10.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

11.
Integrin beta(3) is polymorphic at residue 33 (Leu(33) or Pro(33)), and the Pro(33) variant exhibits increased outside-in signaling to focal adhesion kinase and greater actin reorganization. Because focal adhesion kinase activation and an intact cytoskeleton are critical links for integrin-mediated signaling to MAPK, we explored the role of integrin alpha(IIb)beta(3) in this signaling using Chinese hamster ovary and human kidney 293 cell lines expressing either the Leu(33) or Pro(33) isoform of beta(3). Compared with Leu(33) cells, Pro(33) cells demonstrated substantially greater activation of ERK2 (but not MAPK family members JNK and p38) upon adhesion to immobilized fibrinogen (but not fibronectin) and upon integrin cross-linking. ERK2 activation was mediated through MAPK kinase and required phosphoinositide 3-kinase signaling and an intact actin cytoskeleton. Human platelets and Chinese hamster ovary cells expressing the Pro(33) isoform showed enhanced activation of the ERK2 substrate myosin light chain kinase (MLCK) upon adhering to fibrinogen. Furthermore, compared with platelets and cells expressing the Leu(33) isoform, the Pro(33) variant showed greater alpha-granule release, clot retraction, and adhesion to fibrinogen under shear stress, and these functional differences were abolished by MLCK and MAPK kinase inhibition. Post-integrin occupancy signaling through MAPK and MLCK after alpha(IIb)beta(3) cross-linking may explain in part the increased adhesive properties of the Pro(33) variant of integrin beta(3).  相似文献   

12.
13.
Clumping of Staphylococcal aureus was observed in the presence of fibrinogen as well as fibronectin. In order to elucidate the mechanism of this clumping, binding of radiolabelled fibrinogen and fibronectin to S. aureus cultures was studied. Cultures of S. aureus reacted with 125I-labelled fibrinogen as well as fibronectin. The binding of labelled fibrinogen to S. aureus could be completely inhibited by unlabelled fibronectin, whereas the binding of labelled fibronectin was only partially inhibited by unlabelled fibrinogen. This suggested an interaction of fibronectin with clumping factor which is the binding protein for fibrinogen in staphylococci. The clumping factor was purified from S. aureus strain K 807 by affinity chromatography on fibrinogen-Sepharose followed by HPLC. The purified clumping factor inhibited the binding of fibrinogen and fibronectin to staphylococci. In western blots the purified clumping factor reacted with fibrinogen as well as fibronectin. Thus, the direct interaction of clumping factor with fibronectin might be responsible for the clumping of staphylococci in fibrinogen depleted plasma or serum.  相似文献   

14.
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.  相似文献   

15.
Peptide leads D-Phe-Pro-Arg for thrombin inhibition and Arg-Gly-Asp for antagonistic activity on fibrinogen receptor were combined in one molecule in order to produce compounds capable of acting both as thrombin inhibitors and as fibrinogen receptor antagonists. Peptide conjugate 7 possessing both leads joined by a tetraglycine linker as well as tripeptides and peptidomimetics with highly overlapped D-Phe-Pro-Arg and Arg-Gly-Asp pharmacophore groups were prepared. Conjugate 7 was found to possess antagonistic activity on fibrinogen receptor, but was unexpectedly inactive as thrombin inhibitor. Compound 9 comprising of highly integrated D-Phe-Pro-Arg and Arg-Gly-Asp pharmacophore groups was found to possess a moderate but well balanced thrombin inhibitory and fibrinogen receptor antagonistic activity. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Platelet activation has been a focus of numerous studies in normal and abnormal states. Morphological changes and calcium signals found with activated platelets in vitro have been well characterized. However, the rate of cell spreading on substrates and the frequency of calcium oscillation within individual platelets upon activation have not yet been reported. In this study, we first examined the ability of a recombinant fusion protein of rhodostomin (GST-rhodostomin), a snake disintegrin containing an Arg-Gly-Asp (RGD) motif, to activate platelets when GST-rhodostomin served as a substrate. Four aspects of platelet activities induced by immobilized GST-rhodostomin and fibrinogen were analyzed in parallel. Examinations of (1) translocation of P-selectin from intracellular compartments to the plasma membrane, (2) platelet adhesion to and spreading on substrates, (3) platelet contact pattern on substrates, and (4) the degree of phosphorylation of focal adhesion kinase in platelets indicated that GST-rhodostomin was a better substrate for platelet activation than fibrinogen. Analysis of the rate of platelet spreading on GST-rhodostomin was examined by time-lapsed video microscopy. The spreading rate averaged 0.43 micrometer/minute, while cell spreading averaged 0.22 micrometer/minute when platelets were plated on fibrinogen and treated with thrombin. A newly developed method, using time-lapsed microscopy and the Metamorph program, was used to analyze calcium signals within platelets. We found that platelets on GST-rhodostomin evoked calcium oscillation at a frequency of 4.77 spike/cell/minute vs 2.76 spike/cell/minute on fibrinogen. The results of cell spreading and calcium oscillation were consistent with the results of microscopic and biochemical assays. We therefore conclude that the determination of the rate of platelet spreading and the frequency of calcium oscillation within platelets performed in this study provides more quantitative parameters for measuring platelet activities. Our results also suggest that GST-rhodostomin might potentially be used as a probe to dissect the molecular mechanisms underlying the kinetic processes of platelet activation.  相似文献   

17.
Mildly oxidized low-density lipoprotein activates platelets through lysophosphatidic acid (LPA). Hence, the platelet-activating properties attributed to native low-density lipoprotein (nLDL) might be caused by LPA contamination. We show that nLDL enhances thrombin receptor-activating peptide (TRAP)-induced fibrinogen binding to alpha(IIb)beta(3). The LPA receptor blocker N-palmitoyl-L-serine-phosphoric acid did not affect nLDL-enhanced fibrinogen binding induced by TRAP, but reduced TRAP-induced binding. cAMP and inhibitors of protein kinase C and Ca(2+) rises completely blocked ligand binding by TRAP and nLDL/TRAP. Inhibitors of p38(MAPK) and ADP secretion interfered only partially. Blockade of Rho-kinase increased ligand binding 2-3-fold. We conclude that nLDL enhances TRAP-induced fibrinogen binding independent of LPA.  相似文献   

18.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen- dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

19.
Incubation of washed human blood platelets with 5'-p-fluorosulfonylbenzoyl [3H]adenosine (FSBA) covalently labels a single polypeptide of Mr = 100,000. Protection by ADP has suggested that an ADP receptor on the platelet surface membrane was modified. The modified cells, unlike native platelets, failed to aggregate in response to ADP (100 microM) and fibrinogen (1 mg/ml). The extent of binding of 125I-fibrinogen and aggregation was inhibited to a degree related to the incorporation of 5'-p-sulfonylbenzoyl adenosine (SBA) into platelets, indicating FSBA could inhibit the exposure of fibrinogen receptors by ADP necessary for aggregation. Incubation of SBA platelets with alpha-chymotrypsin cleaved the covalently labeled polypeptide and concomitantly reversed the inhibition of aggregation and fibrinogen binding. Platelets proteolytically digested by chymotrypsin prior to exposure to FSBA did not require ADP for aggregation and fibrinogen binding. Moreover, subsequent exposure to FSBA did not inhibit aggregation or fibrinogen binding. The affinity reagent FSBA can displace fibrinogen bound to platelets in the presence of ADP, as well as promote the rapid disaggregation of the platelets. The apparent initial pseudo-first order rate constant of dissociation of fibrinogen was linearly proportional to FSBA concentrations. These studies suggest that a single polypeptide can be altered either by ADP-induced conformational changes or proteolysis by chymotrypsin to reveal latent fibrinogen receptors and promote aggregation of platelets after fibrinogen binding.  相似文献   

20.
S C Martin  I Bj?rk 《FEBS letters》1990,272(1-2):103-105
The far-ultraviolet circular dichroism spectra of fibrinogens phosphorylated by protein kinase C or casein kinase II indicated a conformational change corresponding to an increase in ordered secondary structure. The spectra of protein kinase A- or casein kinase I-phosphorylated fibrinogens did not differ substantially from the control. Fluorescence studies indicated changes in the tertiary structure around tryptophan residues for protein kinase A- or C-phosphorylated fibrinogens, but failed to show any such change for fibrinogen phosphorylated by either of the casein kinases. This latter result was also confirmed by circular dichroism measurements in the near-ultraviolet region. The apparent increase in ordered structure was proposed as an explanation for the slower rate of plasmin degradation seen in fibrinogens after phosphorylation by protein kinase C [6], and casein kinase II, especially as both spectral changes and plasmin degradation rate were unaffected by alkaline phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号