首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A chemically defined, protein-free, and animal-component-free medium, designated RITM01, has been developed for NS0 myeloma cells. The basal medium used was a commercial serum-free and protein-free hybridoma medium, which was supplemented with phosphatidylcholine, cholesterol, beta-cyclodextrin, and ferric citrate. Increasing the amino acid concentration significantly improved cell growth. An NS0 cell line, constitutively producing a human IgG1 antibody, reached a peak cell density of 3 x 10(6) cells mL(-1) in this medium. The antibody yield was 195 mg L(-1) in batch culture, which is a 3-fold increase compared to that of a standard serum-supplemented medium, even though the cell yield was the same. The increase in antibody yield was a consequence of a longer growth phase and a slight increase in specific antibody production rate at low specific proliferation rates. Adaptation of the NS0 myeloma cell line to the protein-free conditions required about 3 weeks before viability and cell densities were stabilized. Most probably, changes in gene expression and phenotypic behavior necessary for cell survival and proliferation occurred. We hypothesize that mitogenic factors produced by the cells themselves are involved in autocrine control of proliferation. To investigate the presence of such factors, the effect of conditioned (spent) medium (CM) on cell growth and proliferation was studied. Ten-fold concentrated CM, harvested at a cell density of 2 x 10(6) cells mL(-1), had a clear positive effect on proliferation even if supplied at only 2.5% (v/v). CM was found to contain significant amounts of extracellular proteins other than the antibody. Fractionation of CM on a gel filtration column and subsequent supplementation of new NS0 cultures with the individual fractions showed that factors eluting at 20-25 kDa decreased the lag phase and increased the peak cell density as compared to control cultures. Identification of autocrine factors involved in regulation of proliferation may lead to completely new strategies for control of growth and product formation in animal cell processes.  相似文献   

2.
All samples of cyanobacterial blooms collected from 1986 to 1989 from Lake Kasumigaura, Ibaraki Prefecture, Japan, were hepatotoxic. The 50% lethal doses (LD50s) of the blooms to mice ranged from 76 to 556 mg/kg of body weight. Sixty-eight Microcystis cell clones (67 Microcystis aeruginosa and 1 M. viridis) were isolated from the blooms. Twenty-three strains (including the M. viridis strain) were toxic. However, the ratio of toxic to nontoxic strains among the blooms varied (6 to 86%). Microcystins were examined in six toxic strains. Five toxic strains produced microcystin-RR, -YR, and -LR, with RR being the dominant toxin in these strains. Another strain produced 7-desmethylmicrocystin-LR and an unknown microcystin. This strain showed the highest toxicity. Establishment of axenic strains from the Microcystis cells exhibiting extracellularly mucilaginous materials was successful by using a combination of the agar plate technique and two-step centrifugation.  相似文献   

3.
All samples of cyanobacterial blooms collected from 1986 to 1989 from Lake Kasumigaura, Ibaraki Prefecture, Japan, were hepatotoxic. The 50% lethal doses (LD50s) of the blooms to mice ranged from 76 to 556 mg/kg of body weight. Sixty-eight Microcystis cell clones (67 Microcystis aeruginosa and 1 M. viridis) were isolated from the blooms. Twenty-three strains (including the M. viridis strain) were toxic. However, the ratio of toxic to nontoxic strains among the blooms varied (6 to 86%). Microcystins were examined in six toxic strains. Five toxic strains produced microcystin-RR, -YR, and -LR, with RR being the dominant toxin in these strains. Another strain produced 7-desmethylmicrocystin-LR and an unknown microcystin. This strain showed the highest toxicity. Establishment of axenic strains from the Microcystis cells exhibiting extracellularly mucilaginous materials was successful by using a combination of the agar plate technique and two-step centrifugation.  相似文献   

4.
Normal diploid human fibroblasts, cultured at high density (1–2 × 105 cells per cm2) release two growth promoting activities into the culture medium. The fibroblast proliferation activity-conditioned medium facilitates the attachment of low density cells to the substrate. That activity resides in a non-dialyzable material that is sensitive to proteolytic inactivation. A second activity is dialyzable and can be recovered in the dialysate. In the presence of serum it stimulates cell growth. After 168 hours of incubation conditioned medium cultures contain five times more cells than are present in comparable cultures without conditioned medium. A reproducible biological assay for each activity is described.  相似文献   

5.
Summary The purpose of our experiments was to examine variables affecting early events in the establishment of rat tracheal epithelial (RTE) cultures as well as factors regulating long-term RTE cell growth. The experiments showed that when RTE cells were seeded into complete serum-free medium between 13 and 30% of the seeded cells attached. Of the seeded cells, only ∼2% entered into DNA synthesis and underwent repeated cell divisions to form colonies containing >20 cells. Coating the dishes with extracellular matrix components had little effect on cell attachment or colony forming efficiency (CFE). However, coating the dishes with fetal bovine serum markedly increased CFE. The media components bovine serum albumin and bovine pituitary extract were shown to be important in promoting cell attachment as well as CFE. Cholera toxin on the other hand had no effect on cell attachment but significantly increased CFE. These and other studies showed that cell attachment and cell proliferation are independently regulated. Studies on long-term culture growth indicated that the number of progeny produced per colony forming unit (CFU) is inversely proportional to the number of CFUs seeded. Inasmuch as the cultures did not become confluent under any of the culture conditions tested and media obtained from high density cultures were shown to be growth inhibitory, these findings suggest that a diffusible growth restraining factor is being produced by the cultures limiting clonal expansion. Experiments showing growth inhibitory effects of media conditioned by high cell density cultures support this interpretation. The putative factor reaches critical concentrations earlier in cultures seeded with high numbers of CFU than in cultures seeded with low numbers of CFU. Because the cultures are known to produce transforming growth factor-beta, this growth regulator probably plays a role in controlling RTE cell proliferation. However, it is likely than other events, such as depletion of growth factors from the media, also are significant in regulating the growth of the cultures.  相似文献   

6.
The possible role of peptide growth factors in mammalian intrauterine cell growth has been investigated using primary cultures of undifferentiated mesenchymal cells from 11-day mouse embryo limb buds. When grown as monolayer cultures, proliferation is greatly favored by high cell densities. In medium containing 0.2% serum, purified epidermal growth factor (EGF), fibroblast growth factor (FGF), multiplication stimulating activity (MSA), insulin, and somatomedin-C (Sm-C) do not increase cell growth, but a 30-40,000 molecular weight component of mouse fetal liver conditioned medium is stimulatory. On the other hand, when limb bud cells are grown as high density or micromass cultures, a method which better approximates in vivo growth conditions, all of the purified growth factors tested stimulate cell growth significantly. These growth factors have additive effects when used in combination, the best stimulation being observed with liver medium (10% v/v), EGF (10 ng/ml), FGF (200 ng/ml), and either insulin (1 microgram/ml) or Sm-C (20 ng/ml). We conclude that the response of limb bud cells to growth stimulation is influenced by the manner in which the cells are cultured and that at least four different growth factors are required for optimal in vitro proliferation. One of these, the active component of liver medium, appears to be a previously uncharacterized growth factor.  相似文献   

7.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

8.
The effects of L-cell conditioned medium which contains granulocyte/macrophage colony stimulating factor (CSF); of highly purified L-cell CSF; and the antiserum directed against L-cell CSF, have been investigated in long-term murine bone marrow cultures. Treatment of cultures with CSF containing conditioned medium led to a rapid decline in haemopoiesis. However, this inhibition of in vitro haemopoiesis is probably caused by materials other than CSF, since the addition of highly purified L-cell CSF had no appreciable effect upon long-term haemopoietic cell proliferation or differentiation. Furthermore, the inhibitory activity of L-cell conditioned medium was not abrogated following neutralization of the CSF activity by CSF antiserum. The direct addition of CSF antiserum did not inhibit granulocyte or macrophage formation. These results suggest that long-term cultures of murine marrow cells may show extensive interactions with stromal cells which are not influenced by exogenous stimulatory or inhibitory factors.  相似文献   

9.
为探究藻类之间的可能存在的信息传递, 研究了棕鞭藻(Ochromonas sp.)及其培养滤液对铜绿微囊藻的生长及生理特性的影响。结果发现, 3种不同接种比例(1﹕4、1﹕1和4﹕1)的棕鞭藻与微囊藻共培养下, 微囊藻细胞密度到第4天均下降到最低值, 而棕囊藻细胞密度则显著增加。同时, 棕鞭藻培养滤液能够抑制微囊藻的生长、导致丙二醛(MDA)含量和过氧化氢酶(CAT)活性。此外, 棕鞭藻培养滤液也能促进微囊藻胞外多糖(EPS)含量显著增加。这表明棕鞭藻不仅能吞噬微囊藻, 而且可能释放某些化感物质抑制微囊藻生长及生理参数。这暗示了棕鞭藻可作为潜在的藻类水华控制生物, 抑制早期藻类大量增殖。  相似文献   

10.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   

11.
Growth and enzyme development in cell cultures of fetal rat brain were influenced by type of growth medium, cell density, and age of fetal tissue source. Cells grew better in one medium (DMEM), but the other (F12G) enhanced development of choline acetyltransferase activity. One type of growth medium (DMEM) lost efficacy 2 weeks after preparation of complete medium. Cell division rate was density dependent, and choline acetyltransferase development was related to time in culture and cell concentration. Some results suggested division of choline acetyltransferase producing cells. Differences in age of tissue source resulted primarily in differences in growth: cultures of 21 day fetal cells developed more protein per 106 cells inoculated than cultures of cells from younger animals; there was little difference in enzyme activity per culture. Conditions may be controlled such that fetal rat brain cells will grow and express differentiated functions in culture in a predictable manner.  相似文献   

12.
Parathyroid hormone-related protein (PTHrP) plays a major role in the pathogenesis of malignant hypercalcemia, but has also been found in fetal and adult non-neoplastic tissues. Among them, lactating mammary gland was shown to produce PTHrP, and high levels of PTHrP were measured in milk. However, the regulation of PTHrP production by breast cells is still unknown. Primary cultures of mammary cells isolated from rat lactating glands were grown on collagen gels in an insulin/epidermal growth factor (EGF)-supplemented medium. Under these conditions, mammary cells displayed an epithelial phenotype and their number increased more than twofold after 1 week in culture. At that time, the cells were capable of producing immunoreactive PTHrP (range: 25 to 150 pg/10(5) cells x 24 h) and PTH-like bioactivity, as indicated by a 60% increase in cyclic adenosine monophosphate (cAMP) production induced by mammary epithelial cell conditioned medium in the PTH-responsive osteoblast-like UMR-106 cell line. When cell proliferation was hindered by lowering plating density, by removing medium supplements, or by adding transforming growth factor (TGF)-beta, a well-known autocrine inhibitor of mammary epithelial cell growth. PTHrP production was increased. In contrast, the omission of EGF or addition of specified anti-EGF antibodies decreased PTHrP production. In conclusion, primary cultures of mammary epithelial cells isolated from lactating rat were shown for the first time to produce PTHrP in vitro. This production was higher in the presence of EGF and could be modulated by cell growth rate.  相似文献   

13.
Summary The requirements for establishment and survival of primary cultures of larval amphibian liver cells were investigated.Plating efficiency was found to be enhanced by a collagen substrate, by diluted conditioned medium from an adultXenopus kidney cell line and by high initial cell densities. Plating efficiency was highest at a tonicity of 165–220 mOsm/kg. In cultures with undiluted conditioned medium the increase in cell number was 50–60% greater than in controls, where it was about 2-fold between day 3 and 6 of culture. Conditioned medium from theXenopus kidney cell line is assumed to contain at least two components, which are effective at different concentrations and stimulate either plating efficiency and cell aggregation or cell proliferation.In cultures without collagen sheets, cell flattening is greatly reduced, indicating that cell shape is also dependent upon the substrate.  相似文献   

14.
The oxidation of medium chain length alkanes and alkenes (C6 to C12) by Pseudomonas oleovorans and related, biocatalytically active recombinant organisms, in two-liquid phase cultures can be used for the biochemical production of several interesting fine chemicals. The volumetric productivities that can be attained in two-liquid phase systems can be, in contrast to aqueous fermentations, limited by the transport of substrates from an apolar phase to the cells residing in the aqueous phase and by toxic effects of apolar solvents on microbial cells. We have assessed the impact of these possible limitations on attainable productivities in two-liquid phase fermentations operated with mcl-alkanes. Pseudomonas oleovorans grows well in two-liquid phase media containing a bulk n-octane phase as the sole carbon source. However, cells are also damaged, typically resulting in a cell lysis rate of about 0.08 to 0. 10 h-1. These rates could be lowered by 50 to 70% to 0.03 h-1 and substrate yields increased from 0.55 to 0.85 g g-1 by diluting octane in non-metabolizable long-chain hydrocarbon solvents. Transfer rates of medium chain length (mcl) alkanes from the apolar phase to the cells were determined by following growth and the rate at which carbon-containing metabolites accumulated in the different phases of the cultures. mcl-Alkane solvent-cell transfer rates of at least 79, 64, and 18 mmol per liter of aqueous medium per hour were determined for n-heptane, n-octane, and n-decane, respectively. Rates of up to 30 mmol L-1 h-1 were observed under octane-limiting conditions in systems where the apolar substrate was dissolved to concentrations below 3% (v/v) in hexadecene. Based on low power input experiments, we estimated the maximum obtainable mass transfer rates in large scale processes to be in the range of 13 mmol L-1 h-1 for decane and higher than 45 mmol L-1 h-1 for octane and heptane. The results indicate that high solvent to cell mass transfer rates and minimized cell damage will enable high production rates in two-liquid phase bioprocesses, justifying ongoing efforts to attain high densities of catalytically, highly active cells in such systems. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

15.
We have examined conditioned medium (CM) from cultures of normal rat mammary epithelial (RME) cells for growth factor activity on fresh RME cell cultures. RME cell-derived CM contained potent growth inhibitory activity toward fresh RME cell cultures when the medium was acidified by dialysis against 1% acetic acid prior to concentration. Dialysis of the CM at neutral pH resulted in CM that had growth stimulatory activity and no inhibitory activity. The acid-activated growth inhibitor was heat and acid stable, protease sensitive, and eluted from a Bio-Gel p60 column with a peak of activity in the 28 kDa range. Incubation of the acidified-concentrated CM with neutralizing antiserum (affinity purified IgG) against transforming growth factor (TGF)-beta completely abolished the inhibitory activity of the CM. Furthermore, RME cell growth in the presence of the growth inhibitor plus TGF-beta antiserum was greater than that observed in growth medium alone. Subsequent experiments demonstrated that addition of TGF-beta antiserum alone to serum-free medium enhanced RME cell growth, whereas addition of nonimmune IgG was without effect even at 25-fold higher concentrations. Zymographic analysis of RME-CM revealed the presence of plasminogen activator proteases that may mediate the partial activation of the latent growth factor. These results indicate that normal RME cells secrete a latent TGF-beta-like growth factor into conditioned medium. Furthermore, the results indicate that some of the latent growth factor is activated in situ and contributes to the growth potential of the cells in primary culture in an autocrine manner.  相似文献   

16.
A decline in cell surface gamma-glutamyl transpeptidase specific activity was previously observed to be concomitant with C6 glial cell proliferation. To elucidate the underlying factor(s) mediating gamma-glutamyl transpeptidase down-regulation, the effects of C6 cell density and culture conditions on cell surface transpeptidase activity levels were investigated. After 24 h of culture, the transpeptidase specific activities were inversely related to the initial plating densities. The lower-density cultures showed an induction within 24 h of plating. As the cultures proliferated, the specific transpeptidase activities declined to a common low level at post-confluency. The gamma-glutamyl transpeptidase down-regulation was unrelated to cell growth rate and was most pronounced during logarithmic proliferation. Induction and down-regulation of gamma-glutamyl transpeptidase activity at low cell densities were not a result of trypsinization. Supplementation of low-density cultures with conditioned medium, use of matrix-coated wells, or periodic replacement of growth media to prevent conditioning had minor effects on the decline of cell surface activity. Kinetic analysis showed that the Michaelis constants and the reaction mechanism were unaltered by cell density, indicating that down-regulation was not due to allosteric factors or an alteration in enzyme character. A reduction in the maximal velocity of cell surface transpeptidation at higher cell densities suggested that gamma-glutamyl transpeptidase down-regulation is related to the concentration of enzyme at the cell surface. Immunocytochemical localization of gamma-glutamyl transpeptidase demonstrated that gamma-glutamyl transpeptidase antigen levels decrease as C6 cell density increases. These results led us to propose that cell-cell contact stimulates the disappearance of gamma-glutamyl transpeptidase from the surface of cultured C6 glial cells.  相似文献   

17.
The growth rate of chick embryo cells in slowly proliferating cultures is activated after substitution of conditioned medium by fresh one with serum. After cell replanting, the stimulation of cell proliferation takes place in both media with the same effectiveness. In serum-less medium replanted cells do not adhere to glass and die. The results suggest that cells reversibly lose their dependence upon serum growth factors and population density, as a result of replanting, but retain anchorage-dependence for growth.  相似文献   

18.
Cell cycle progression was studied in serum-free batch cultures of Spodoptera frugiperda (Sf9) insect cells, and the implications for proliferation and productivity were investigated. Cell cycle dynamics in KBM10 serum-free medium was characterized by an accumulation of 50-70% of the cells in the G(2)/M phase of the cell cycle during the first 24 h after inoculation. Following the cell cycle arrest, the cell population was redistributed into G(1) and in particular into the S phase. Maximum rate of proliferation (micro(N, max)) was reached 24-48 h after the release from cell cycle arrest, coinciding with a minimum distribution of cells in the G(2)/M phase. The following declining micro(N) could be explained by a slow increase in the G(2)/M cell population. However, at approximately 100 h, an abrupt increase in the amount of G(2)/M cells occurred. This switch occurred at about the same time point and cell density, irrespective of medium composition and maximum cell density. An octaploid population evolved from G(2)/M arrested cells, showing the occurrence of endoreplication in this cell line. In addition, conditioned medium factor(s) were found to increase micro(N,max), decrease the time to reach micro(N,max), and decrease the synchronization of cells in G(2)/M during the lag and growth phase. A conditioned medium factor appears to be a small peptide. On basis of these results we suggest that the observed cell cycle dynamics is the result of autoregulatory events occurring at key points during the course of a culture, and that entry into mitosis is the target for regulation. Infecting the Sf9 cells with recombinant baculovirus resulted in a linear increase in volumetric productivity of beta-galactosidase up to 68-75 h of culture. Beyond this point almost no product was formed. Medium renewal at the time of infection could only partly restore the lost hypertrophy and product yield of cultures infected after the transition point. The critical time of infection correlated to the time when the mean population cell volume had attained a minimum, and this occurred 24 h before the switch into the G(2)/M phase. We suggest that the cell density dependent decrease in productivity ultimately depends on the autoregulatory events leading to G(2)/M cell cycle arrest.  相似文献   

19.
The cell carbohydrate content of cyanobacteria can alter buoyancy, and the ability to regulate the buoyancy is one of the most important mechanisms of cyanobacterial blooms. The net accumulation of carbohydrate in cell is affected by photosynthesis, respiration, synthesis of proteins, and other metabolisms, which are connected to the growth. The aim of this work is to seek the relationship between growth rate and intracellular carbohydrate content. The cell carbohydrate content in Microcystis aeruginosa cultures with different growth characteristics was investigated, and the relationship between growth rate and accumulated carbohydrate in cyanobacterial cells was analyzed. The result showed that the specific growth rate was inversely proportional to cell carbohydrate content. The growth rate was relatively high when the cell carbohydrate content was low. It can be indicated that high growth occurs when cells are buoyant, which favors blooms.  相似文献   

20.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号