首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Amino acid sequences of the first half of MSEL- and VLDV-neurophysins from goose and chicken have been determined. Identical substitutions in positions 17, 18, 35, 36 and 41 of both neurophysins of a given species when compared with their mammalian counterparts suggest a gene conversion between vasotocin—MSEL-neurophysin and mesotocin—VLDV-neurophysin genes. This event, which has already been observed for three mammalian species, seems recurrent and would link the evolution of the two neurohypophysial hormone precursors.  相似文献   

2.
Two rat neurophysins have been purified by salt precipitation, molecular sieving and ion-exchange chromatography. The proteins, performic-acid oxidized or reduced-alkylated, have been split either by trypsin or by staphylococcal proteinase and fragments have been separated by peptide mapping. Amino acid sequences of tryptic peptides have been determined either directly or after cleaving the large fragments by subtilisin, chymotrypsin, elastase or staphylococcal proteinase and characterizing the subfragments. Tryptic peptides have been ordered through the fragments given by staphylococcal proteinase. The N-terminal sequences of both proteins have also been established by automated degradation.The two usual types of mammalian neurophysins have been identified. One neurophysin belongs to the MSEL-neurophysin family and shows 11 substitutions and a 2-residue C-terminal truncation when compared with bovine MSEL-neurophysin. The other belongs to the VLDV-neurophysin family and shows 8 substitutions when compared with bovine VLDV-neurophysin. There are 23 differences between the MSEL- and VLDV-neurophysins of the rat.  相似文献   

3.
Precursors of neurohypophysial hormones are small proteins processed into nonapeptide hormones and neurophysins during axonal transport to the neurohypophysis. In mammals, oxytocin is associated with VLDV-neurophysin and vasopressin with MSEL-neurophysin. In birds, mesotocin and vasotocin are found instead of mammalian oxytocin and vasopressin. From goose, chicken and ostrich posterior pituitary glands, two types of neurophysins related to mammalian VLDV-and MSEL-neurophysins, respectively, have been identified by their N-terminal sequences. It is assumed that, as in mammals, hormonal peptide and the first 9 residues of the corresponding neurophysin are encoded by a common exon and that mesotocin and vasotocin, evolutionary predecessors of oxytocin and vasopressin, are associated in the precursors with VLDV-neurophysin and MSEL-neurophysin, respectively.  相似文献   

4.
Neurohypophysial hormone-Neurophysin complexes have been prepared from posterior pituitary glands of Artiodactyla (ox, sheep, pig), Perissodactyla (horse) and Cetacea (whale), by fractionated salt precipitation. The components have been separated by molecular sieving in 0.2 M acetic acid and neurophysins have been purified by ion-exchange chromatography on DEAE-Sephadex A-50. Two types of neurophysins, MSEL-neurophysins and VLDV-neurophysins, can be distinguished according to the amino acid residues in positions 2, 3, 6 and 7. MSEL-neurophysins of sheep, ox and pig have been characterized by the amino acid sequence. Ovine and bovine MSEL-neurophysins are nearly identical (one substitution out of 95 residues) and porcine MSEL-neurophysin is very similar (four substitutions and an apparent 3-residue C-terminal deletion). The biological function of neurophysins might be the carriage of neurohypophysial hormones but in this respect, each type of neurophysin is not clearly specific for a given hormone. On the other hand, each neurophysin might share a common precursor with a neurohypophysial hormone, the two parts remaining associated after cleavage. However, in the sheep posterior pituitary gland, the molar proportions of the two types of neurophysins, oxytocin and arginine vasopressin, are not equal, MSEL-neurophysin being more abundant than the other components. If a common precursor exists, neurophysins and neurohypophysial hormones are not merely produced by a simple cleavage mechanism.  相似文献   

5.
The neurohypophyseal hormones vasopressin and oxytocin are known to be synthesized in eutherian mammals as part of larger precursors containing either MSEL- or VLDV-neurophysins. A neurophysin has been isolated from ostrich neurohypophyses and shown by partial amino acid sequence determination to be related to mammalian VLDV-neurophysin. The present report describes the complete amino acid sequence of this ostrich neurophysin containing 93 residues. This amino acid sequence, the first reported in birds, differs in a remarkable manner from its mammalian homolog. Indeed, it contains a large number of substitutions, including one insertion, distributed throughout the polypeptide chain when compared to known VLDV-neurophysins. Whereas many of these substitutions are localized inside the so-called constant region of the neurophysin, the highest variation can be found in the COOH-terminal region.  相似文献   

6.
The neurophysins are a class of hypothalamo-neurohypophyseal proteins that function as carriers of the neuropeptide hormones oxytocin and vasopressin. Currently, we are using reverse-phase high-performance liquid chromatography for structural characterization of the neurophysins, their chemically modified derivatives, and biosynthetic precursors. A cyanopropylsilyl (Zorbax CN) matrix has been found to be efficient and convenient for separation of major tryptic peptides of performic acid, oxidized or reduced, and alkylated neurophysins. Using this peptide mapping system we have studied the site of modification of a photoaffinitylabeled derivative of bovine neurophysin II by separation and identification of covalently modified peptides. In addition, this system has been used for mapping subfemtomole amounts of radioactively labeled biosynthetic precursors of the neurophysins. This procedure has allowed identification of neurophysin sequences within both pre-pro-neurophysins produced by in vitro translation and rat pro-neurophysins produced by in vivo pulse labeling.  相似文献   

7.
Neurohypophyseal hormones are fragments of precursor proteins that include specific neurophysins and are processed during axonal transport. Neurohormones and neurophysins purified from 7-9 month old bovine foetuses have been characterized by amino acid analysis and partial amino acid sequences. Oxytocin and arginine vasopressin, on one hand, and VLDV-neurophysin and MSEL-neurophysin, on the other, are identical to products previously characterized in the adult. Whereas oxytocin and vasopressin genes seem to be expressed at the same rates in the adult, as judged by the amounts of their peptide products in neurohypophysis, in the late foetus the vasopressin gene appears to be roughly three times more active than the oxytocin gene.  相似文献   

8.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

9.
Vasotocin-associated neurophysin (MSEL-neurophysin) has been purified from goose neurohypophysis through molecular sieving and high-pressure reverse-phase liquid chromatography (HPLC). The protein has a molecular mass (measured by SDS-polyacrylamide gel electrophoresis) of 17 kDa in contrast to 10 kDa found for the mammalian MSEL-neurophysins. Complete amino acid sequence (131 residues) has been determined mainly through tryptic or staphylococcal proteinase peptides derived from carboxyamidomethylated neurophysin, isolated by HPLC and microsequenced. N- and C-terminal sequences have been established by Edman degradation or action of carboxypeptidase Y, respectively, applied on the native protein. Goose MSEL-neurophysin is homologous to the two-domain "big" MSEL-neurophysin previously identified in the frog. It appears that in non-mammalian tetrapods, namely birds and amphibians, the proteolytic processing of the pro-vasotocin involves only one cleavage, releasing the hormone moiety and a "big" neurophysin with two domains homologous to mammalian MSEL-neurophysin and copeptin, respectively. Comparison of the avian protein with its mammalian and amphibian counterparts reveals that the first half of the polypeptide chain is evolutionarily much less variable than the second and that the goose protein resembles the frog protein much more than the mammalian one.  相似文献   

10.
R Acher  J Chauvet 《Biochimie》1988,70(9):1197-1207
Neurohypophysial hormones and neurophysins are derived from common precursors processed during the axonal transport from the hypothalamus to the neurohypophysis. Two neurohormones, an oxytocin-like and a vasopressin-like, on one hand, two neurophysins, termed VLDV-and MSEL-neurophysins according to residues in positions 2, 3, 6 and 7, on the other, are usually found in vertebrate species. In contrast to placental mammals that have oxytocin and arginine vasopressin, marsupials have undergone a peculiar evolution. Two pressor peptides, lysipressin and vasopressin for American species, lysipressin and phenylpressin for Australian macropods, have been identified in individual glands and it is assumed that the primordial vasopressin gene has been duplicated in these lineages. On the other hand, the reptilian mesotocin is still present in Australian species instead of the mammalian oxytocin, while the North American opossum has both hormones and South American opossums have only oxytocin. The neurophysin domain of each precursor is encoded by 3 exons and different evolutionary rates have been found for the 3 corresponding parts of the protein. The central parts, encoded by the central exons, are evolutionarily very stable and nearly identical in the 2 neurophysins of a given species. Recurrent gene conversions have apparently linked the evolutions of the 2 precursor lineages. In mammals, the 3-domain precursor of vasopressin is processed in 2 stages: a first cleavage splitting off vasopressin and a second cleavage separating MSEL-neurophysin from copeptin. Two distinct enzymatic systems seem to be involved in these cleavages. Processing is usually complete at the level of the neurohypophysis, but an intermediate precursor encompassing MSEL -neurophysin and copeptin linked by an arginine residue has been characterized in guinea pig. In vitro processing of this intermediate through trypsin--Sepharose reveals cleavages only in the interdomain region. In non-mammalian tetrapods, such as birds and amphibians, mesotocin and vasotocin are associated with neurophysins in precursors similar to those found in mammals. However, processing of the vasotocin precursor seems to be different from the processing of the vasopressin precursor, with a single cleavage leading to the hormone release.  相似文献   

11.
Neurophysins are part of the prohormones for vasopressin and oxytocin, and are localized with these hormones in the magnocellular cells of the neurohypophysis. New techniques have identified neurophysins in other areas within and outside the central nervous system, and we report here the isolation of neurophysins from the uterus of the rat. Using immunohistology the neurophysin immunoreactivity was localized to the epithelial lining cells of the uterus, and using radioimmunoassay was also present in uterine fluid suggesting secretion into the uterine cavity. The amount of uterine neurophysin increased in response to administered estrogen and was especially elevated in the pregnant uterus. The neurophysin-like material isolated from the uterus was similar to neurophysins from the neurohypophysis by radioimmunoassay, molecular sieve chromatography, isoelectric focusing and SDS gel electrophoresis. Both neurohypophyseal hormones, vasopressin and oxytocin, were also extracted from uterine endothelium and identified by radioimmunoassay and high pressure liquid chromatography.  相似文献   

12.
Specific, homologous porcine neurophysin I and II radioimmunoassays were established together with specific oxytocin and vasopressin radioimmunoassays. The levels of each of these proteins and peptides were measured in acid extracts of individual paraventricular nuclei, supraoptic nuclei, neurohypophyseal stalks and posterior pituitary lobes of 12 pigs in order to quantitate the neurophysin-hormone relationships in the porcine neurohypophyseal system. Neurophysin III was found to be immunologically identical to neurophysin I. Neurophysin measurements by radioimmunoassay were quantitatively validated by scanning densitometry of polyacrylamide gels stained with 0.5% amido schwarz. In the hypothalamic nuclei vasopressin was in 3–4 M excess of oxytocin but in the neurohypophyseal stalk and posterior pituitary lobe the hormones were equimolar suggesting that the rate of formation of vasopressin differs from that of oxytocin. Neurophysin I immunoreactivity was present in a 3:1 molar ratio with neurophysin II throughout the porcine neurohypophyseal system. In posterior pituitary lobes total neurophysins were equimolar to total hormone concentrations. The specific activity (pmol/mg extracted protein) of oxytocin increased 1800 times, vasopressin 560 times and neurophysins about 360 times from the paraventricular nucleus to the posterior pituitary lobe. In the hypothalamic nuclei relationships between immunoreactive neurophysin I and vasopressin, and between neurophysin II and oxytocin were highly significant. In the posterior pituitary lobe each immunoreactive neurophysin level correlated with both hormone levels. Quantification of densitometric scans of stained polyacrylamide gels from neurophypophyseal extracts and immunoreactivity patterns of neurophysins in eluates of sliced, duplicate gels indicated that neurophysin III decreased distally within the neurohypophyseal tract while neurophysin I increased. The results demonstrated that vasopressin was associated with porcine neurophysin I. However, oxytocin may be associated with both immunoreactive neurophysin I and neurophysin II in the porcine neurohypophyseal system if a 1:1 molar ratio of neurophysin to hormone is to be maintained. Neurophysin III contributed to the stoichiometry of this relationship.  相似文献   

13.
Methionyl-tyrosyl-phenylalanyl-ω-aminohexyl-agarose was synthesized and shown to be suitable for both the affinity chromatographic purification of neurophysins and the measurement of the ligand binding parameters of these proteins by quantitative affinity chromatography. Bovine neurophysin I binds to the tripeptidyl matrix in 0.4 m ammonium acetate, pH 5.7, conditions under which no binding occurs with the parent ω-aminohexyl-agarose. Subsequent elution can be effected with 0.2 m acetic acid. The affinity matrices obtained have capacities for neurophysin of up to 4 mg/ml gel bed volume and therein provide for the convenient purification of the neurophysins by a two-step buffer-acid elution. [Carbamoyl-14C]neurophysin I also binds to the ligand-agarose matrix. Using this labeled protein, competitive elution analysis was performed by one-step elution of zones of protein with the binding buffer in the presence of varying amounts of soluble competitive ligand, lysine vasopressin. The characteristic decrease of elution volume of labeled protein with increasing soluble, competing ligand concentration indicates that the affinity matrix interacts biospecifically with neurophysin. This analysis allows the binding affinities for both soluble vasopressin and immobilized tripeptide ligand to be quantitated.  相似文献   

14.
Neurohypophysial hormone precursors are small proteins processed into several fragments during axonal transport from hypothalamus to neurohypophysis. From 3-month-old fetal bovine pituitaries the three fragments of vasopressin precursor, arginine vasopressin, MSEL-neurophysin and copeptin, and the two fragments of oxytocin precursor, oxytocin and VLDV-neurophysin, have been isolated and characterized. These polypeptides are identical to those previously identified in the late fetus (7-9 months old) and in the adult. It is concluded that the same genes are expressed during fetal and adult lives, the vasopressin gene appearing roughly four times more active than the oxytocin gene in the early fetus. Vasotocin, mesotocin and additional neurophysin have not been detected in the early fetus.  相似文献   

15.
The methyl-acceptor activities of bovine neurophysins I and II for the enzyme protein carboxymethylase (EC 2.1.1.24) were found to be similar and as high as for other previously identified, biologically active protein substrates. Effects on the rate of methylation of these neurophysins were investigated with the posterior pituitary hormone ligands, oxytocin and vasopressin, and the hormone-related tripeptide ligand, methionyl-tyrosyl-phenylalaninamide. An increase in the rate of neurophysin II methylation was observed with both oxytocin and tripeptide. This ligand-induced response did not occur with either native neurophysin I or disulfide-scrambled neurophysin II.  相似文献   

16.
Both ion-exchange and reverse-phase HPLC protocols for micromapping of neurophysins have been examined and the structural relationships among the major isoforms identified in the maps have been characterized. Reverse-phase HPLC was found to be especially useful for obtaining fingerprints of the isoforms within each of the two major families of neurophysins, I (oxytocin-related) and II (vasopressin-related), for both bovine and human neurophysins from posterior pituitary sources. From fractionation of the bovine proteins on octylsilyl columns, at least four neurophysins I were identified, one of which corresponds to the intact sequence of 93 residues and three of which vary from the parent by various degrees of carboxyl-terminal truncation. For bovine neurophysin II, two isoforms were identified in the reverse-phase HPLC maps, both of 95 residues, which vary from one another by the residue, either Ile or Val, at position 89. Isoforms were also detected for human neurophysins, including a carboxyl-terminal truncated form of human neurophysin II. All of the major neurophysin isoforms and several of the minor forms were shown to be functionally active as expressed by their binding to peptide ligand affinity matrices. Reverse-phase HPLC mapping on the octylsilyl matrix allowed neurophysin fingerprinting of crude tissue extracts by providing a narrow "window" within which the neurophysins elute but many other polypeptides expected to be present are excluded. The reverse phase HPLC method provides a useful way to obtain isolated neurophysin isoforms for physicochemical characterizations now usually carried out with mixtures of isoforms obtained by ion-exchange chromatography. The method also has characteristics amenable both for high-sensitivity fingerprinting of neurophysin isoforms, from different species and anatomical sources, and as a prelude to microstructural and -functional characterization of the isoforms so isolated.  相似文献   

17.
The amino acid sequence of guinea pig MSEL-neurophysin has been determined using tryptic peptides derived from the performic acid-oxidized protein and staphylococcal proteinase peptides obtained from the reduced-carboxamidomethylated neurophysin. Guinea pig MSEL-neurophysin consists of a 93-residue polypeptide chain that shows 12 substitutions and 2 deletions when compared to bovine MSEL-neurophysin. It displays the highest number of variations among known mammalian MSEL-neurophysins. These variations are mainly found in the C-terminal region (residues 88-93). Moreover guinea pig MSEL-neurophysin, like rat homologous protein, exhibits substitutions in positions 2, 5, 29 and 81 and lacks an arginine in the penultimate position. Comparison between eight mammalian MSEL-neurophysins reveals a highly conserved region (residues 1 to 88) and a hypervariable region (residues 89 to 93/95). On the other hand the eight species examined are endowed with arginine vasopressin except pig, which has a lysine vasopressin. In the vasopressin-MSEL-neurophysin precursor, the hormonal moiety and the MSEL region of neurophysin (residues 1-9) are encoded by a common exon in ox, rat and man; it can be concluded that this exon is evolutionarily conservative in contrast to the one encoding the C-terminal region of MSEL-neurophysin.  相似文献   

18.
35S-cysteine injected adjacent to the supraoptic nucleus (SON) of the rat is rapidly incorporated into proteins. These 35S-cysteine-labeled proteins in the SON (1-24 h after injection) were separated by polyacrylamide gel electrophoresis, and the distribution of radioactive proteins on the gels was analyzed. 1 h after injection, about 73% of the radioactivity appeared in two peaks (both about 20,000 mol wt). With time, these peaks (putative precursors of neurophysin) decreased, as a 12,000 mol wt peak (containing two distinct neurophysins) increased in radioactivity. Both the 20,000- and 12,000-mol wt proteins are transported into the axonal (median eminence) and nerve terminal (posterior pituitary) regions of the rat hypothalamo-neurohypophysial system. Conversion of the larger precursor protein to the smaller neurophysin appears to occur, in large part, intra-axonally during axonal transport. Six distinct 35S-cysteine-labeled peptides (less than 2500 mol wt), in addition to arginine vasopressin and oxytocin, are also synthesized in the SON and transported to the posterior pituitary where they are released together with labeled neurophysin by potassium depolarization in the presence of extracellular calcium. These data provide support for the hypothesis that the neurohypophysial peptides (vasopressin and oxytocin) and neurophysins are derived from the post- translational clevage of protein precursors synthesized in the SON, and that the conversion process can occur in the neurosecretory granule during axonal transport.  相似文献   

19.
High-performance liquid chromatography (HPLC) is being used extensively to characterize active polypeptides, precursor processing mechanisms, and cooperative peptide—protein noncovalent complexes in neuroendocrine pathways for neurohypophysial peptide hormones, oxytocin and vasopressin, and the hormone-associated proteins, neurophysins. Reversed-phase and ion-exchange HPLC polypeptide mapping have been used to detect the hormones, associated proteins, and other molecular forms containing these. This mapping but also ultimately to identify anatomical sites which contain the neurophysin/ hormone molecular pathways and to define the relatedness of polypeptide forms contained in different pathways. Reversed-phase HPLC also has provided a means to study proteolytic precursor processing, both to isolate synthetic and semisynthetic polypeptides and intermediates produced by these reactions. Finally, bioaffinity HPLC is being evaluated as a separatory and analytical tool. The latter includes its use to characterize the noncovalent peptide—protein and protein—protein interactions which occur among the molecular forms of the neurophysin/hormone pathways. These experiments typify the impact of HPLC for both analytical and preparative separations in studies of biologically active peptides and proteins.  相似文献   

20.
Transplantable human oat cell carcinoma cells of the lung with ectopic vasopressin production were incubated with labeled amino acids and immunoreactive neurophysins in cell extracts were analyzed by isoelectric focusing. When the cells were incubated with L-(35S)-cysteine for 20 h, one major peak (isoelectric point; pI=5.3) and several minor peaks (pI=6.1, 5.7, 5.1, 4.9 and 4.7) of labeled proteins were observed. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the relative molecular mass (Mr) of the pI 5.7 protein was estimated to be 20,000 and that of the pI 6.1 species to be 19,000, while the remainder had a Mr of approximately 10,000. The result of the pulse-labeling experiment has clearly shown that the pI 5.7 and 6.1 proteins, which have affinity for concanavalin A, are biosynthetic precursors for the smaller form of neurophysin with a pI 5.3. When subjected to limited proteolysis with trypsin, the pI 5.7 protein generated a Mr 10,000 protein and a smaller peptide. The Mr 10,000 protein thus produced was identified as neurophysin on the basis of its pH-dependent affinity for vasopressin and the migration pattern on isoelectric focusing. The smaller peptide coeluted with synthetic arginine vasopressin and bound to neurophysin suggesting that it possesses a cysteine-tyrosyl sequence at its N-terminus. Similarly, the pI 6.1 protein liberated neurophysin and vasopressin-like peptide after incubation with trypsin. These results suggests that the glycosylated protein with a pI of 5.7 and a Mr of 20,000 is the common precursor to vasopressin and neurophysin in human oat cell carcinoma of the lung with ectopic vasopressin production. The pI 6.1 protein may be an intermediate in the conversion of the precursor to vasopressin and neurophysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号